cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A133869 Numbers k such that 32*k + 1 is prime.

Original entry on oeis.org

3, 6, 8, 11, 14, 18, 20, 21, 24, 29, 36, 38, 39, 44, 50, 53, 59, 63, 65, 66, 71, 81, 83, 84, 86, 95, 98, 99, 104, 105, 108, 113, 125, 129, 134, 140, 141, 146, 150, 156, 161, 165, 170, 174, 183, 186, 191, 198, 204, 209, 218, 228, 231, 233, 234, 239, 240, 245, 246
Offset: 1

Views

Author

Zak Seidov, Sep 27 2007

Keywords

Crossrefs

Cf. A133870 (corresponding primes).

Programs

A163592 Numbers n such that n^6 + 545 is prime.

Original entry on oeis.org

84, 1302, 10584, 11382, 12012, 12558, 13356, 15498, 19362, 20286, 20496, 22092, 23142, 23772, 25452, 26418, 26502, 26544, 28644, 29274, 29778, 31374, 31962, 35406, 36876, 37338, 39522, 40152, 40488, 41286, 42924, 43428, 45108, 46116, 47754, 47796, 48678
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 01 2009

Keywords

Crossrefs

Programs

A263770 Smallest prime q such that (prime(n)^2 + q*prime(n))/(prime(n) + 1) is an integer.

Original entry on oeis.org

7, 5, 7, 17, 13, 29, 19, 41, 73, 31, 97, 191, 43, 89, 97, 109, 61, 311, 137, 73, 149, 241, 337, 181, 197, 103, 313, 109, 331, 229, 257, 397, 139, 281, 151, 457, 317, 821, 337, 349, 181, 547, 193, 389, 199, 401, 1061, 449, 229, 461, 937, 241, 727, 757, 1033, 1321, 271, 1361, 557
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

Least prime q such that q == 1 (mod prime(n) + 1).

Crossrefs

Programs

  • Mathematica
    Table[q = 2; While[! IntegerQ[(Prime[n]^2 + q Prime@ n)/(Prime@ n + 1)], q = NextPrime@ q]; q, {n, 59}] (* Michael De Vlieger, Oct 26 2015 *)
  • PARI
    a(n) = {p = prime(n); q = 2; while ((p^2 + p*q) % (p + 1), q = nextprime(q+1)); q;} \\ Michel Marcus, Oct 26 2015

Formula

5 is in this sequence because (prime(2)^2 + 5*prime(2))/(prime(2) + 1) = 6 and 5 is prime.

A376349 Number of isomorphism classes k of groups G of order p*2^n when G contains a unique Sylow p subgroup and the maximal 2^m dividing p-1 is such that 2^m >= 2^n.

Original entry on oeis.org

1, 2, 5, 15, 54, 247, 1684, 21820, 1118964
Offset: 0

Views

Author

Miles Englezou, Sep 19 2024

Keywords

Comments

A Sylow p subgroup is a subgroup of order p^r that necessarily exists when r is a maximal power of p. It is not necessarily unique, but when it is unique it is normal in G.
The condition that G of order p*2^n contains a unique Sylow p subgroup places an upper bound on the number of isomorphism classes of G; it is equivalent to stating that the minimal 2^r such that 2^r == 1 (mod p) be such that 2^r > 2^n. The condition that the maximal 2^m dividing p-1, i.e. for p == 1 (mod 2^m), is such that 2^m >= 2^n ensures a lower bound which is equal to the upper bound. See the Miles Englezou link for a proof.
If we relax the two conditions and just consider an arbitrary odd prime p and the number of isomorphism classes for |G| = p*2^n, it is likely that the set of such numbers is unique to p. Since every odd prime has a minimal 2^r such that 2^r == 1 (mod p) (a consequence of Fermat's little theorem), when 2^r = 2^n for |G| = p*2^n, the number of isomorphism classes will differ from a(n) due to the existence of groups where the Sylow p subgroup is not unique.

Examples

			a(2) = 5 since D_(p*2^2), C_(p*2^2), C_(p*2^1) x C_2, and two semidirect products C_p : C_4 are all the groups of order p*2^2 for p satisfying the two conditions.
Table showing minimal 2^r and maximal 2^m (as defined in the Comments) for some primes:
---------------------------------------------------------------------------
p |      Minimal 2^r == 1 (mod p)       |   Maximal 2^m, p == 1 (mod 2^m)  |
---------------------------------------------------------------------------
2 |             2^0  = 1                |              2^0 = 1             |
3 |             2^2  = 4                |              2^1 = 2             |
5 |             2^4  = 16               |              2^2 = 4             |
7 |             2^3  = 8                |              2^1 = 2             |
11|             2^10 = 1024             |              2^1 = 2             |
13|             2^12 = 4096             |              2^2 = 4             |
17|             2^8  = 256              |              2^4 = 16            |
19|             2^18 = 262144           |              2^1 = 2             |
23|             2^11 = 2048             |              2^1 = 2             |
29|             2^28 = 268435456        |              2^2 = 4             |
31|             2^5  = 32               |              2^1 = 2             |
37|             2^36 = 68719476736      |              2^2 = 4             |
---------------------------------------------------------------------------
Table of primes satisfying 2^r > 2^n, and 2^m >= 2^n:
-------------------------------------------------------------------------------
   2^n   |                          primes                           |   a(n)  |
-------------------------------------------------------------------------------
2^0 = 1  |  all primes                                    = A000040  | 1       |
2^1 = 2  |  all primes > 2                                = A065091  | 2       |
2^2 = 4  |  5, 13, 17, 29, 37, 41, 53, ...                = A002144  | 5       |
2^3 = 8  |  17, 41, 73, 89, 97, 113, 137, ...             = A007519  | 15      |
2^4 = 16 |  17, 97, 113, 193, 241, 257, 337 ...           = A094407  | 54      |
2^5 = 32 |  97, 193, 257, 353, 449, 577, 641, ...         = A133870  | 247     |
2^6 = 64 |  193, 257, 449, 577, 641, 769, 1153, ...       = A142925  | 1684    |
2^7 = 128|  257, 641, 769, 1153, 1409, 2689, 3329, ...    = A208177  | 21820   |
2^8 = 256|  257, 769, 3329, 7937, 9473, 14081, 14593 ...  = A105131  | 1118964 |
-------------------------------------------------------------------------------
		

Crossrefs

Programs

  • GAP
    S:=[];
    for i in [0..8] do
        n:=7681*2^i; # 7681 is an appropriate prime for reproducing up to a(8)
        S:=Concatenation(S,[NrSmallGroups(n)]);
    od;
    Print(S);

Formula

a(n) = A000001(p*2^(n)) for every p satisfying the two conditions mentioned in Comments.
Previous Showing 11-14 of 14 results.