cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 287 results. Next

A221529 Triangle read by rows: T(n,k) = A000203(k)*A000041(n-k), 1 <= k <= n.

Original entry on oeis.org

1, 1, 3, 2, 3, 4, 3, 6, 4, 7, 5, 9, 8, 7, 6, 7, 15, 12, 14, 6, 12, 11, 21, 20, 21, 12, 12, 8, 15, 33, 28, 35, 18, 24, 8, 15, 22, 45, 44, 49, 30, 36, 16, 15, 13, 30, 66, 60, 77, 42, 60, 24, 30, 13, 18, 42, 90, 88, 105, 66, 84, 40, 45, 26, 18, 12, 56, 126, 120, 154, 90, 132, 56, 75, 39, 36, 12, 28
Offset: 1

Views

Author

Omar E. Pol, Jan 20 2013

Keywords

Comments

Since A000203(k) has a symmetric representation, both T(n,k) and the partial sums of row n can be represented by symmetric polycubes. For more information see A237593 and A237270. For another version see A245099. - Omar E. Pol, Jul 15 2014
From Omar E. Pol, Jul 10 2021: (Start)
The above comment refers to a symmetric tower whose terraces are the symmetric representation of sigma(i), for i = 1..n, starting from the top. The levels of these terraces are the partition numbers A000041(h-1), for h = 1 to n, starting from the base of the tower, where n is the length of the largest side of the base.
The base of the tower is the symmetric representation of A024916(n).
The height of the tower is equal to A000041(n-1).
The surface area of the tower is equal to A345023(n).
The volume (or the number of cubes) of the tower equals A066186(n).
The volume represents the n-th term of the convolution of A000203 and A000041, that is A066186(n).
Note that the terraces that are the symmetric representation of sigma(n) and the terraces that are the symmetric representation of sigma(n-1) both are unified in level 1 of the structure. That is because the first two partition numbers A000041 are [1, 1].
The tower is an object of the family of the stepped pyramid described in A245092.
T(n,k) can be represented with a set of A237271(k) right prisms of height A000041(n-k) since T(n,k) is the total number of cubes that are exactly below the parts of the symmetric representation of sigma(k) in the tower.
T(n,k) is also the sum of all divisors of all k's that are in the first n rows of triangle A336811, or in other words, in the first A000070(n-1) terms of the sequence A336811. Hence T(n,k) is also the sum of all divisors of all k's in the n-th row of triangle A176206.
The mentioned property is due to the correspondence between divisors and parts explained in A338156: all divisors of the first A000070(n-1) terms of A336811 are also all parts of all partitions of n.
Therefore the set of all partitions of n >= 1 has an associated tower.
The partial column sums of A340583 give this triangle showing the growth of the structure of the tower.
Note that the convolution of A000203 with any integer sequence S can be represented with a symmetric tower or structure of the same family where its terraces are the symmetric representation of sigma starting from the top and the heights of the terraces starting from the base are the terms of the sequence S. (End)

Examples

			Triangle begins:
------------------------------------------------------
    n| k    1   2   3   4   5   6   7   8   9  10
------------------------------------------------------
    1|      1;
    2|      1,  3;
    3|      2,  3,  4;
    4|      3,  6,  4,  7;
    5|      5,  9,  8,  7,  6;
    6|      7, 15, 12, 14,  6, 12;
    7|     11, 21, 20, 21, 12, 12,  8;
    8|     15, 33, 28, 35, 18, 24,  8, 15;
    9|     22, 45, 44, 49, 30, 36, 16, 15, 13;
   10|     30, 66, 60, 77, 42, 60, 24, 30, 13, 18;
...
The sum of row 10 is [30 + 66 + 60 + 77 + 42 + 60 + 24 + 30 + 13 + 18] = A066186(10) = 420.
.
For n = 10 the calculation of the row 10 is as follows:
    k    A000203         T(10,k)
    1       1   *  30   =   30
    2       3   *  22   =   66
    3       4   *  15   =   60
    4       7   *  11   =   77
    5       6   *   7   =   42
    6      12   *   5   =   60
    7       8   *   3   =   24
    8      15   *   2   =   30
    9      13   *   1   =   13
   10      18   *   1   =   18
                 A000041
.
From _Omar E. Pol_, Jul 13 2021: (Start)
For n = 10 we can see below three views of two associated polycubes called here "prism of partitions" and "tower". Both objects contain the same number of cubes (that property is valid for n >= 1).
        _ _ _ _ _ _ _ _ _ _
  42   |_ _ _ _ _          |
       |_ _ _ _ _|_        |
       |_ _ _ _ _ _|_      |
       |_ _ _ _      |     |
       |_ _ _ _|_ _ _|_    |
       |_ _ _ _        |   |
       |_ _ _ _|_      |   |
       |_ _ _ _ _|_    |   |
       |_ _ _      |   |   |
       |_ _ _|_    |   |   |
       |_ _    |   |   |   |
       |_ _|_ _|_ _|_ _|_  |                             _
  30   |_ _ _ _ _        | |                            | | 30
       |_ _ _ _ _|_      | |                            | |
       |_ _ _      |     | |                            | |
       |_ _ _|_ _ _|_    | |                            | |
       |_ _ _ _      |   | |                            | |
       |_ _ _ _|_    |   | |                            | |
       |_ _ _    |   |   | |                            | |
       |_ _ _|_ _|_ _|_  | |                           _|_|
  22   |_ _ _ _        | | |                          |   |  22
       |_ _ _ _|_      | | |                          |   |
       |_ _ _ _ _|_    | | |                          |   |
       |_ _ _      |   | | |                          |   |
       |_ _ _|_    |   | | |                          |   |
       |_ _    |   |   | | |                          |   |
       |_ _|_ _|_ _|_  | | |                         _|_ _|
  15   |_ _ _ _      | | | |                        | |   |  15
       |_ _ _ _|_    | | | |                        | |   |
       |_ _ _    |   | | | |                        | |   |
       |_ _ _|_ _|_  | | | |                       _|_|_ _|
  11   |_ _ _      | | | | |                      | |     |  11
       |_ _ _|_    | | | | |                      | |     |
       |_ _    |   | | | | |                      | |     |
       |_ _|_ _|_  | | | | |                     _| |_ _ _|
   7   |_ _ _    | | | | | |                    |   |     |   7
       |_ _ _|_  | | | | | |                   _|_ _|_ _ _|
   5   |_ _    | | | | | | |                  | | |       |   5
       |_ _|_  | | | | | | |                 _| | |_ _ _ _|
   3   |_ _  | | | | | | | |               _|_ _|_|_ _ _ _|   3
   2   |_  | | | | | | | | |           _ _|_ _|_|_ _ _ _ _|   2
   1   |_|_|_|_|_|_|_|_|_|_|          |_ _|_|_|_ _ _ _ _ _|   1
.
             Figure 1.                       Figure 2.
         Front view of the                 Lateral view
        prism of partitions.               of the tower.
.
.                                      _ _ _ _ _ _ _ _ _ _
                                      |   | | | | | | | |_|   1
                                      |   | | | | | |_|_ _|   2
                                      |   | | | |_|_  |_ _|   3
                                      |   | |_|_    |_ _ _|   4
                                      |   |_ _  |_  |_ _ _|   5
                                      |_ _    |_  |_ _ _ _|   6
                                          |_    | |_ _ _ _|   7
                                            |_  |_ _ _ _ _|   8
                                              |           |   9
                                              |_ _ _ _ _ _|  10
.
                                             Figure 3.
                                             Top view
                                           of the tower.
.
Figure 1 is a two-dimensional diagram of the partitions of 10 in colexicographic order (cf. A026792, A211992). The area of the diagram is 10*42 = A066186(10) = 420. Note that the diagram can be interpreted also as the front view of a right prism whose volume is 1*10*42 = 420 equaling the volume and the number of cubes of the tower that appears in the figures 2 and 3.
Note that the shape and the area of the lateral view of the tower are the same as the shape and the area where the 1's are located in the diagram of partitions. In this case the mentioned area equals A000070(10-1) = 97.
The connection between these two associated objects is a representation of the correspondence divisor/part described in A338156. See also A336812.
The sum of the volumes of both objects equals A220909.
For the connection with the table of A338156 see also A340035. (End)
		

Crossrefs

Programs

  • Mathematica
    nrows=12; Table[Table[DivisorSigma[1,k]PartitionsP[n-k],{k,n}],{n,nrows}] // Flatten (* Paolo Xausa, Jun 17 2022 *)
  • PARI
    T(n,k)=sigma(k)*numbpart(n-k) \\ Charles R Greathouse IV, Feb 19 2013

Formula

T(n,k) = sigma(k)*p(n-k) = A000203(k)*A027293(n,k).
T(n,k) = A245093(n,k)*A027293(n,k).

A193870 Triangle of regions and partitions of integers (see Comments lines for definition).

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 2, 0, 0, 0, 4, 2, 1, 1, 1, 3, 0, 0, 0, 0, 0, 5, 2, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 07 2011

Keywords

Comments

Triangle T(n,k) read by rows in which, from rows 1..n, if r = T(n,k) is a record in the sequence then the set of positive integers in every row (from 1 to n) is called a “region” of r. Note that n, the number of regions of r is also the number of partitions of r. The consecutive records "r" are the natural numbers A000027. The triangle has the property that, for rows n..1, the diagonals (without the zeros) are also the partitions of r, in juxtaposed reverse-lexicographical order. Note that a record "r" is the initial term of a row if such row contains 1’s. If T(n,k) is a record in the sequence then A000041(T(n,k)) = n. Note that if T(n,k) < 2 is not the last term of the row n then T(n,k+1) = T(n,k). The union of the rows that contain 1's gives A182715.

Examples

			Triangle begins:
1,
2, 1,
3, 1, 1,
2, 0, 0, 0,
4, 2, 1, 1, 1,
3, 0, 0, 0, 0, 0,
5, 2, 1, 1, 1, 1, 1,
2, 0, 0, 0, 0, 0, 0, 0,
4, 2, 0, 0, 0, 0, 0, 0, 0,
3, 0, 0, 0, 0, 0, 0, 0, 0, 0,
6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1,
…
For n = 11 note that the row n contains the 6th record in the sequence: T(11,1) = a(56) = 6, then consider the first 11 rows of triangle. Note that the diagonals d, from d = n..1, without the zeros, are also the partitions of 6 in juxtaposed reverse-lexicographical order: [6], [3, 3], [4, 2], [2, 2, 2], [5, 1], [3, 2, 1], [4, 1, 1], [2, 2, 1, 1], [3, 1, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]. See A026792.
		

Crossrefs

Mirror of triangle A186114. Column 1 gives A141285. Right diagonal gives A167392.

Programs

Formula

T(n,1) = A141285(n).
T(n,k) = A167392(n), if k = n.

A338156 Irregular triangle read by rows in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the divisors of (n - m + 1), with 1 <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 6, 1, 5, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 3, 6, 1, 5, 1, 5, 1, 2, 4, 1, 2, 4, 1, 2, 4
Offset: 1

Views

Author

Omar E. Pol, Oct 14 2020

Keywords

Comments

In other words: in row n replace every term of n-th row of A176206 with its divisors.
The terms in row n are also all parts of all partitions of n.
As in A336812 here we introduce a new type of table which shows the correspondence between divisors and partitions. More precisely the table shows the correspondence between all divisors of all terms of the n-th row of A176206 and all parts of all partitions of n, with n >= 1. Both the mentionded divisors and the mentioned parts are the same numbers (see Example section). That is because all divisors of the first A000070(n-1) terms of A336811 are also all parts of all partitions of n.
For an equivalent table for all parts of the last section of the set of partitions of n see the subsequence A336812. The section is the smallest substructure of the set of partitions in which appears the correspondence divisor/part.
From Omar E. Pol, Aug 01 2021: (Start)
The terms of row n appears in the triangle A346741 ordered in accordance with the successive sections of the set of partitions of n.
The terms of row n in nonincreasing order give the n-th row of A302246.
The terms of row n in nondecreasing order give the n-th row of A302247.
For the connection with the tower described in A221529 see also A340035. (End)

Examples

			Triangle begins:
  [1];
  [1,2],   [1];
  [1,3],   [1,2],   [1],   [1];
  [1,2,4], [1,3],   [1,2], [1,2], [1],   [1],   [1];
  [1,5],   [1,2,4], [1,3], [1,3], [1,2], [1,2], [1,2], [1], [1], [1], [1], [1];
  ...
For n = 5 the 5th row of A176206 is [5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1] so replacing every term with its divisors we have the 5th row of this triangle.
Also, if the sequence is written as an irregular tetrahedron so the first six slices are:
  [1],
  -------
  [1, 2],
  [1],
  -------
  [1, 3],
  [1, 2],
  [1],
  [1];
  ----------
  [1, 2, 4],
  [1, 3],
  [1, 2],
  [1, 2],
  [1],
  [1],
  [1];
  ----------
  [1, 5],
  [1, 2, 4],
  [1, 3],
  [1, 3],
  [1, 2],
  [1, 2],
  [1, 2],
  [1],
  [1],
  [1],
  [1],
  [1];
.
The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and all parts of all partitions of the positive integers.
The table is infinite. It is formed by three zones as follows:
The upper zone shows the partitions of every positive integer in colexicographic order (cf. A026792, A211992).
The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above.
Finally the middle zone shows the connection between the upper zone and the lower zone.
For every positive integer the numbers in the upper zone are the same numbers as in the lower zone.
.
|---|---------|-----|-------|---------|------------|---------------|
| n |         |  1  |   2   |    3    |      4     |       5       |
|---|---------|-----|-------|---------|------------|---------------|
| P |         |     |       |         |            |               |
| A |         |     |       |         |            |               |
| R |         |     |       |         |            |               |
| T |         |     |       |         |            |  5            |
| I |         |     |       |         |            |  3  2         |
| T |         |     |       |         |  4         |  4  1         |
| I |         |     |       |         |  2  2      |  2  2  1      |
| O |         |     |       |  3      |  3  1      |  3  1  1      |
| N |         |     |  2    |  2 1    |  2  1 1    |  2  1  1 1    |
| S |         |  1  |  1 1  |  1 1 1  |  1  1 1 1  |  1  1  1 1 1  |
----|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
|   | A181187 |  1  |  3 1  |  6 2 1  | 12  5 2 1  | 20  8  4 2 1  |
|   |         |  |  |  |/|  |  |/|/|  |  |/ |/|/|  |  |/ | /|/|/|  |
| L | A066633 |  1  |  2 1  |  4 1 1  |  7  3 1 1  | 12  4  2 1 1  |
| I |         |  *  |  * *  |  * * *  |  *  * * *  |  *  *  * * *  |
| N | A002260 |  1  |  1 2  |  1 2 3  |  1  2 3 4  |  1  2  3 4 5  |
| K |         |  =  |  = =  |  = = =  |  =  = = =  |  =  =  = = =  |
|   | A138785 |  1  |  2 2  |  4 2 3  |  7  6 3 4  | 12  8  6 4 5  |
|   |         |  |  |  |\|  |  |\|\|  |  |\ |\|\|  |  |\ |\ |\|\|  |
|   | A206561 |  1  |  4 2  |  9 5 3  | 20 13 7 4  | 35 23 15 9 5  |
|---|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1  2   4  |  1         5  |
|   |---------|-----|-------|---------|------------|---------------|
|   | A027750 |     |  1    |  1 2    |  1    3    |  1  2    4    |
|   |---------|-----|-------|---------|------------|---------------|
| D | A027750 |     |       |  1      |  1  2      |  1     3      |
| I | A027750 |     |       |  1      |  1  2      |  1     3      |
| V |---------|-----|-------|---------|------------|---------------|
| I | A027750 |     |       |         |  1         |  1  2         |
| S | A027750 |     |       |         |  1         |  1  2         |
| O | A027750 |     |       |         |  1         |  1  2         |
| R |---------|-----|-------|---------|------------|---------------|
| S | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|---|---------|-----|-------|---------|------------|---------------|
.
Note that every row in the lower zone lists A027750.
Also the lower zone for every positive integer can be constructed using the first n terms of the partition numbers. For example: for n = 5 we consider the first 5 terms of A000041 (that is [1, 1, 2, 3, 5]) then the 5th slice is formed by a block with the divisors of 5, one block with the divisors of 4, two blocks with the divisors of 3, three blocks with the divisors of 2, and five blocks with the divisors of 1.
Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base.
The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n).
The above table shows the correspondence between the prism of partitions and its associated tower since the number of parts in all partitions of n is equal to A006128(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts of all partitions of n is equal to A066186(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
		

Crossrefs

Nonzero terms of A340031.
Row n has length A006128(n).
The sum of row n is A066186(n).
The product of row n is A007870(n).
Row n lists the first n rows of A336812 (a subsequence).
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).

Programs

  • Mathematica
    A338156[rowmax_]:=Table[Flatten[Table[ConstantArray[Divisors[n-m],PartitionsP[m]],{m,0,n-1}]],{n,rowmax}];
    A338156[10] (* Generates 10 rows *) (* Paolo Xausa, Jan 12 2023 *)
  • PARI
    A338156(rowmax)=vector(rowmax,n,concat(vector(n,m,concat(vector(numbpart(m-1),i,divisors(n-m+1))))));
    A338156(10) \\ Generates 10 rows - Paolo Xausa, Feb 17 2023

A014153 Expansion of 1/((1-x)^2*Product_{k>=1} (1-x^k)).

Original entry on oeis.org

1, 3, 7, 14, 26, 45, 75, 120, 187, 284, 423, 618, 890, 1263, 1771, 2455, 3370, 4582, 6179, 8266, 10980, 14486, 18994, 24757, 32095, 41391, 53123, 67865, 86325, 109350, 137979, 173450, 217270, 271233, 337506, 418662, 517795, 638565, 785350, 963320, 1178628
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n with three kinds of 1. E.g., a(2)=7 because we have 2, 1+1, 1+1', 1+1", 1'+1', 1'+1", 1"+1". - Emeric Deutsch, Mar 22 2005
Partial sums of the partial sums of the partition numbers A000041. Partial sums of A000070. Euler transform of 3,1,1,1,...
Also sum of parts, counted without multiplicity, in all partitions of n, offset 1. Also Sum phi(p), where the sum is taken over all parts p of all partitions of n, offset 1. - Vladeta Jovovic, Mar 26 2005
Equals row sums of triangle A141157. - Gary W. Adamson, Jun 12 2008
A014153 convolved with A010815 = (1, 2, 3, ...). n-th partial sum sequence of A000041 convolved with A010815 = (n-1)-th column of Pascal's triangle, starting (1, n, ...). - Gary W. Adamson, Nov 09 2008
From Omar E. Pol, May 25 2012: (Start)
a(n) is also the sum of all parts of the (n+1)st column of a version of the section model of partitions in which every section has its parts aligned to the right margin (cf. A210953, A210970, A135010).
Rows of triangle A210952 converge to this sequence. (End)
Using the above result (see Jovovic's comment) of Jovovic and Mertens's theorem on the average order of the phi function, we can obtain the estimate a(n-1) = (6/Pi^2)*n*p(n) + O(log(n)*A006128(n)), where p(n) is the partition function A000041(n). It can be shown that A006128(n) = O(sqrt(n)*log(n)*p(n)), so we have the asymptotic result a(n) ~ (6/Pi^2)*n*p(n). - Peter Bala, Dec 23 2013
a(n-2) is the number of partitions of 2n or 2n-1 with palindromicity 2; that is, partitions that can be listed in palindromic order except for a central sequence of two distinct parts. - Gregory L. Simay, Nov 01 2015
Convolution of A000041 and A000027. - Omar E. Pol, Jun 17 2021
Convolution of A002865 and the positive terms of A000217. Partial sums give A014160. - Omar E. Pol, Mar 01 2023

Crossrefs

Cf. A010815. - Gary W. Adamson, Nov 09 2008
Column k=3 of A292508.

Programs

  • Magma
    m:=45; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/((1-x)^2*(&*[1-x^k: k in [1..50]])) )); // G. C. Greubel, Oct 15 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add((2+sigma(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 13 2012
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[(2+DivisorSigma[1, j])*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    Table[Sum[(n-k)*PartitionsP[k],{k,0,n}],{n,1,50}] (* Vaclav Kotesovec, Jun 23 2015 *)
    t[n_, k_] := Sum[StirlingS1[n, j]* Binomial[i + j - 1, i]* PartitionsP[k - n - i], {j, 0, n}, {i, 0, k - n}]; Print@ Table[t[n, k], {k, 10}, {n, 0, k - 1}]; Table[t[2, k], {k, 3, 43}] (* George Beck, May 25 2016 *)
  • PARI
    x='x+O('x^45); Vec(1/((1-x)^2*prod(k=1,50, 1-x^k))) \\ G. C. Greubel, Oct 15 2018

Formula

Let t(n_, k_) = Sum_{i = 0..k} Sum_{j = 0..n} s(n, j)*C(i, j)*p(k - n - i), where s(n, j) are Stirling numbers of the first kind, C(i, j) are the number of compositions of i distinct objects into j parts, and p is the integer partition function. Then a(k) = t(2, k+2) (conjectured). The formula for t(n, k) is the same as at A126442 except that there the Stirling numbers are of the second kind. - George Beck, May 21 2016
a(n) = (n+1)*A000070(n+1) - A182738(n+1). - Vaclav Kotesovec, Nov 04 2016
a(n) ~ exp(sqrt(2*n/3)*Pi)*sqrt(3)/(2*Pi^2) * (1 + 23*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Nov 04 2016

A194447 Rank of the n-th region of the set of partitions of j, if 1<=n<=A000041(j).

Original entry on oeis.org

0, 0, 0, 1, -1, 2, -2, 1, 2, 2, -5, 2, 3, 3, -8, 1, 2, 2, 2, 4, 3, -14, 2, 3, 3, 3, 2, 4, 4, -21, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -32, 2, 3, 3, 3, 2, 4, 4, 1, 4, 3, 5, 6, 5, -45, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -2, 2, 4, 4, 5, 3, 6, 6, 5, -65
Offset: 1

Views

Author

Omar E. Pol, Dec 04 2011

Keywords

Comments

Here the rank of a "region" is defined to be the largest part minus the number of parts (the same idea as the Dyson's rank of a partition).
Also triangle read by rows: T(j,k) = rank of the k-th region of the last section of the set of partitions of j.
The sum of every row is equal to zero.
Note that in some rows there are several negative terms. - Omar E. Pol, Oct 27 2012
For the definition of "region" see A206437. See also A225600 and A225610. - Omar E. Pol, Aug 12 2013

Examples

			In the triangle T(j,k) for j = 6 the number of regions in the last section of the set of partitions of 6 is equal to 4. The first region given by [2] has rank 2-1 = 1. The second region given by [4,2] has rank 4-2 = 2. The third region given by [3] has rank 3-1 = 2. The fourth region given by [6,3,2,2,1,1,1,1,1,1,1] has rank 6-11 = -5 (see below):
From _Omar E. Pol_, Aug 12 2013: (Start)
---------------------------------------------------------
.    Regions       Illustration of ranks of the regions
---------------------------------------------------------
.    For J=6        k=1     k=2      k=3        k=4
.  _ _ _ _ _ _                              _ _ _ _ _ _
. |_ _ _      |                     _ _ _   .          |
. |_ _ _|_    |           _ _ _ _   * * .|    .        |
. |_ _    |   |     _ _   * * .  |              .      |
. |_ _|_ _|_  |     * .|        .|                .    |
.           | |                                     .  |
.           | |                                       .|
.           | |                                       *|
.           | |                                       *|
.           | |                                       *|
.           | |                                       *|
.           |_|                                       *|
.
So row 6 lists:     1       2         2              -5
(End)
Written as a triangle begins:
0;
0;
0;
1,-1;
2,-2;
1,2,2,-5;
2,3,3,-8;
1,2,2,2,4,3,-14;
2,3,3,3,2,4,4,-21;
1,2,2,2,4,3,1,3,5,5,4,-32;
2,3,3,3,2,4,4,1,4,3,5,6,5,-45;
1,2,2,2,4,3,1,3,5,5,4,-2,2,4,4,5,3,6,6,5,-65;
2,3,3,3,2,4,4,1,4,3,5,6,5,-3,3,5,5,4,5,4,7,7,6,-88;
		

Crossrefs

Row j has length A187219(j). The absolute value of the last term of row j is A000094(j+1). Row sums give A000004.

Formula

a(n) = A141285(n) - A194446(n). - Omar E. Pol, Dec 05 2011

A186412 Sum of all parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).

Original entry on oeis.org

1, 3, 5, 2, 9, 3, 12, 2, 6, 3, 20, 3, 7, 4, 25, 2, 6, 3, 13, 5, 4, 38, 3, 7, 4, 14, 3, 9, 5, 49, 2, 6, 3, 13, 5, 4, 23, 4, 10, 6, 5, 69, 3, 7, 4, 14, 3, 9, 5, 27, 5, 4, 15, 7, 6, 87, 2, 6, 3, 13, 5, 4, 23, 4, 10, 6, 5, 39, 3, 9, 5, 19, 4, 12, 7, 6, 123
Offset: 1

Views

Author

Omar E. Pol, Aug 12 2011

Keywords

Comments

Also triangle read by rows: T(j,k) = sum of all parts in the k-th region of the last section of the set of partitions of j. See Example section. For more information see A135010. - Omar E. Pol, Nov 26 2011
For the definition of "region" see A206437. - Omar E. Pol, Aug 19 2013

Examples

			Contribution from Omar E. Pol, Nov 26 2011 (Start):
Written as a triangle:
1;
3;
5;
2,9;
3,12;
2,6,3,20;
3,7,4,25;
2,6,3,13,5,4,38;
3,7,4,14,3,9,5,49;
2,6,3,13,5,4,23,4,10,6,5,69;
3,7,4,14,3,9,5,27,5,4,15,7,6,87;
2,6,3,13,5,4,23,4,10,6,5,39,3,9,5,19,4,12,7,6,123;
(End)
From _Omar E. Pol_, Aug 18 2013: (Start)
Illustration of initial terms (first seven regions):
.                                             _ _ _ _ _
.                                     _ _ _  |_ _ _ _ _|
.                           _ _ _ _  |_ _ _|       |_ _|
.                     _ _  |_ _ _ _|                 |_|
.             _ _ _  |_ _|     |_ _|                 |_|
.       _ _  |_ _ _|             |_|                 |_|
.   _  |_ _|     |_|             |_|                 |_|
.  |_|   |_|     |_|             |_|                 |_|
.
.   1     3       5     2         9       3          12
.
(End)
		

Crossrefs

Row sums of triangle A186114 and of triangle A193870.
Row j has length A187219(j).
Row sums give A138879.
Right border gives A046746, j >= 1.
Records give A046746, j >= 1.
Partial sums give A182244.

Programs

  • Mathematica
    lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
    A186412 = {}; l = {};
    For[j = 1, j <= 50, j++,
      mx = Max@lex[j][[j]]; AppendTo[l, mx];
      For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
      AppendTo[A186412, Total@Take[Reverse[First /@ lex[mx]], j - i]];
      ];
    A186412  (* Robert Price, Jul 25 2020 *)

Formula

a(A000041(n)) = A046746(n).

A207031 Triangle read by rows: T(n,k) = sum of all parts of the k-th column of the last section of the set of partitions of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 6, 3, 1, 1, 8, 3, 2, 1, 1, 15, 8, 4, 2, 1, 1, 19, 8, 5, 3, 2, 1, 1, 32, 17, 9, 6, 3, 2, 1, 1, 42, 20, 13, 7, 5, 3, 2, 1, 1, 64, 34, 19, 13, 8, 5, 3, 2, 1, 1, 83, 41, 26, 16, 11, 7, 5, 3, 2, 1, 1, 124, 68, 41, 27, 17, 12, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 14 2012

Keywords

Comments

Also T(n,k) is the number of parts >= k in the last section of the set of partitions of n. Therefore T(n,1) = A138137(n), the total number of parts in the last section of the set of partitions of n. For calculation of the number of odd/even parts, etc, follow the same rules from A206563.
More generally, let m and n be two positive integers such that m <= n. It appears that any set formed by m connected sections, or m disconnected sections, or a mixture of both, has the same properties described in the entry A206563.
It appears that reversed rows converge to A000041.
It appears that the first differences of row n together with 1 give the row n of triangle A182703 (see example). - Omar E. Pol, Feb 26 2012

Examples

			Illustration of initial terms. First six rows of triangle as sums of columns from the last sections of the first six natural numbers (or as sums of columns from the six sections of 6):
.                                         6
.                                         3 3
.                                         4 2
.                                         2 2 2
.                            5              1
.                            3 2              1
.                  4           1              1
.                  2 2           1              1
.          3         1           1              1
.     2      1         1           1              1
.  1    1      1         1           1              1
. --- --- ------- --------- ----------- --------------
A: 1, 2,1, 3,1,1,  6,3,1,1,  8,3,2,1,1,  15,8,4,2,1,1
.  |  |/|  |/|/|   |/|/|/|   |/|/|/|/|    |/|/|/|/|/|
B: 1, 1,1, 2,0,1,  3,2,0,1,  5,1,1,0,1,   7,4,2,1,0,1
.
A := initial terms of this triangle.
B := initial terms of triangle A182703.
.
Triangle begins:
1;
2,    1;
3,    1,  1;
6,    3,  1,  1;
8,    3,  2,  1,  1;
15,   8,  4,  2,  1,  1;
19,   8,  5,  3,  2,  1,  1;
32,  17,  9,  6,  3,  2,  1,  1;
42,  20, 13,  7,  5,  3,  2,  1,  1;
64,  34, 19, 13,  8,  5,  3,  2,  1,  1;
83,  41, 26, 16, 11,  7,  5,  3,  2,  1,  1;
124, 68, 41, 27, 17, 12,  7,  5,  3,  2,  1,  1;
		

Crossrefs

Formula

From Omar E. Pol, Dec 07 2019: (Start)
From the formula in A138135 (year 2008) we have that:
A000041(n-1) = A138137(n) - A138135(n) = T(n,1) - T(n,2);
Hence A000041(n) = T(n+1,1) - T(n+1,2), n >= 0;
Also A000041(n) = A002865(n) + T(n,1) - T(n,2). (End)

Extensions

More terms from Alois P. Heinz, Feb 17 2012

A336812 Irregular triangle read by rows T(n,k), n >= 1, k >= 1, in which row n is constructed replacing every term of row n of A336811 with its divisors.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 2, 3, 6, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 4, 8, 1, 2, 3, 6, 1, 5, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 9, 1, 7, 1, 2, 3, 6
Offset: 1

Views

Author

Omar E. Pol, Nov 20 2020

Keywords

Comments

Here we introduce a new type of table which shows the correspondence between divisors and partitions. More precisely the table shows the corresponce between all parts of the last section of the set of partitions of n and all divisors of all terms of the n-th row of A336811, with n >= 1. The mentionded parts and the mentioned divisors are the same numbers (see Example section).
For an equivalent table showing the same kind of correspondence for all partitions of all positive integers see the supersequence A338156.

Examples

			Triangle begins:
  [1];
  [1, 2];
  [1, 3],       [1];
  [1, 2, 4],    [1, 2],    [1];
  [1, 5],       [1, 3],    [1, 2], [1],    [1];
  [1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1];
  ...
For n = 6 the 6th row of A336811 is [6, 4, 3, 2, 2, 1, 1] so replacing every term with its divisors we have {[1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1]} the same as the 6th row of this triangle.
Also, if the sequence is written as an irregular tetrahedron so the first six slices are:
  -------------
  [1],
  -------------
  [1, 2];
  -------------
  [1, 3],
  [1];
  -------------
  [1, 2, 4],
  [1, 2],
  [1];
  -------------
  [1, 5],
  [1, 3],
  [1, 2],
  [1],
  [1];
  -------------
  [1, 2, 3, 6],
  [1, 2, 4],
  [1, 3],
  [1, 2],
  [1, 2],
  [1],
  [1];
  -------------
The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and the parts of the last section of the set of partitions of the positive integers.
The table is infinite. It is formed by three zones as follows:
The upper zone shows the last section of the set of partitions of every positive integer.
The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above.
Finally the middle zone shows the connection between the upper zone and the lower zone.
For every positive integer the numbers in the upper zone are the same numbers as in the lower zone.
|---|---------|-----|-------|---------|-----------|-------------|---------------|
| n |         |  1  |   2   |    3    |     4     |      5      |       6       |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
|   |         |     |       |         |           |             |  6            |
| P |         |     |       |         |           |             |  3 3          |
| A |         |     |       |         |           |             |  4 2          |
| R |         |     |       |         |           |             |  2 2 2        |
| T |         |     |       |         |           |  5          |    1          |
| I |         |     |       |         |           |  3 2        |      1        |
| T |         |     |       |         |  4        |    1        |      1        |
| I |         |     |       |         |  2 2      |      1      |        1      |
| O |         |     |       |  3      |    1      |      1      |        1      |
| N |         |     |  2    |    1    |      1    |        1    |          1    |
| S |         |  1  |    1  |      1  |        1  |          1  |            1  |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
.
|---|---------|-----|-------|---------|-----------|-------------|---------------|
|   | A207031 |  1  |  2 1  |  3 1 1  |  6 3 1 1  |  8 3 2 1 1  | 15 8 4 2 1 1  |
| L |         |  |  |  |/|  |  |/|/|  |  |/|/|/|  |  |/|/|/|/|  |  |/|/|/|/|/|  |
| I | A182703 |  1  |  1 1  |  2 0 1  |  3 2 0 1  |  5 1 1 0 1  |  7 4 2 1 0 1  |
| N |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |  * * * * * *  |
| K | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |  1 2 3 4 5 6  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |  = = = = = =  |
|   | A207383 |  1  |  1 2  |  2 0 3  |  3 4 0 4  |  5 2 3 0 5  |  7 8 6 4 0 6  |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
.
|---|---------|-----|-------|---------|-----------|-------------|---------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |  1 2 3     6  |
| D |---------|-----|-------|---------|-----------|-------------|---------------|
| I | A027750 |     |       |  1      |  1 2      |  1   3      |  1 2   4      |
| V |---------|-----|-------|---------|-----------|-------------|---------------|
| I | A027750 |     |       |         |  1        |  1 2        |  1   3        |
| S |---------|-----|-------|---------|-----------|-------------|---------------|
| O | A027750 |     |       |         |           |  1          |  1 2          |
| R | A027750 |     |       |         |           |  1          |  1 2          |
| S |---------|-----|-------|---------|-----------|-------------|---------------|
|   | A027750 |     |       |         |           |             |  1            |
|   | A027750 |     |       |         |           |             |  1            |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
.
Note that every row in the lower zone lists A027750.
The "section" is the simpler substructure of the set of partitions of n that has this property in the three zones.
Also the lower zone for every positive integer can be constructed using the first n terms of A002865. For example: for n = 6 we consider the first 6 terms of A002865 (that is [1, 0, 1, 1, 2, 2]) and then the 6th slice is formed by a block with the divisors of 6, no block with the divisors of 5, one block with the divisors of 4, one block with the divisors of 3, two blocks with the divisors of 2 and two blocks with the divisors of 1.
Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base.
The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n).
The above table shows the growth step by step of both the prism of partitions and its associated tower since the number of parts in the last section of the set of partitions of n is equal to A138137(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts in the last section of the set of partitions of n is equal to A138879(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
		

Crossrefs

Programs

  • Mathematica
    A336812[row_]:=Flatten[Table[ConstantArray[Divisors[row-m],PartitionsP[m]-PartitionsP[m-1]],{m,0,row-1}]];
    Array[A336812,10] (* Generates 10 rows *) (* Paolo Xausa, Feb 16 2023 *)

A182699 Number of emergent parts in all partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 4, 4, 10, 12, 22, 27, 47, 56, 89, 112, 164, 205, 294, 364, 505, 630, 845, 1052, 1393, 1719, 2235, 2762, 3533, 4343, 5506, 6730, 8443, 10296, 12786, 15531, 19161, 23161, 28374, 34201, 41621, 49975, 60513, 72385, 87200, 103999, 124670, 148209
Offset: 0

Views

Author

Omar E. Pol, Nov 29 2010

Keywords

Comments

Here the "emergent parts" of the partitions of n are defined to be the parts (with multiplicity) of all the partitions that do not contain "1" as a part, removed by one copy of the smallest part of every partition. Note that these parts are located in the head of the last section of the set of partitions of n.
Also, here the "filler parts" of the partitions of n are defined to be the parts of the last section of the set of partitions of n that are not the emergent parts.
For n >= 4, length of row n of A183152. - Omar E. Pol, Aug 08 2011
Also total number of parts of the regions that do not contain 1 as a part in the last section of the set of partitions of n (cf. A083751, A187219). - Omar E. Pol, Mar 04 2012

Examples

			For n = 6 the partitions of 6 contain four "emergent" parts: (3), (4), (2), (2), so a(6) = 4. See below the location of the emergent parts.
6
(3) + 3
(4) + 2
(2) + (2) + 2
5 + 1
3 + 2 + 1
4 + 1 + 1
2 + 2 + 1 + 1
3 + 1 + 1 + 1
2 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1
For a(10) = 22 see the link for the location of the 22 "emergent parts" (colored yellow and green) and the location of the 42 "filler parts" (colored blue) in the last section of the set of partitions of 10.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local t, h;
          if n<0 then [0, 0, 0]
        elif n=0 then [0, 1, 0]
        elif i<2 then [0, 0, 0]
        else t:= b(n, i-1); h:= b(n-i, i);
             [t[1]+h[1]+h[2], t[2], t[3]+h[3]+h[1]]
          fi
        end:
    a:= n-> b(n, n)[3]:
    seq (a(n), n=0..50);  # Alois P. Heinz, Oct 21 2011
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{t, h}, Which[n<0, {0, 0, 0}, n == 0, {0, 1, 0}, i<2 , {0, 0, 0}, True, t = b[n, i-1]; h = b[n-i, i]; Join [t[[1]] + h[[1]] + h[[2]], t[[2]], t[[3]] + h[[3]] + h[[1]] ]]]; a[n_] := b[n, n][[3]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 18 2015, after Alois P. Heinz *)

Formula

a(n) = A138135(n) - A002865(n), n >= 1.
From Omar E. Pol, Oct 21 2011: (Start)
a(n) = A006128(n) - A006128(n-1) - A000041(n), n >= 1.
a(n) = A138137(n) - A000041(n), n >= 1. (End)
a(n) = A076276(n) - A006128(n-1), n >= 1. - Omar E. Pol, Oct 30 2011

A340035 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(n-m) copies of the divisors of m, with 1 <= m <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 4, 1, 2, 4, 1, 5, 1, 2, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2020

Keywords

Comments

For further information about the correspondence divisor/part see A338156.

Examples

			Triangle begins:
  1;
  1, 1, 2;
  1, 1, 1, 2, 1, 3;
  1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 4;
  1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 4, 1, 5;
  ...
Written as an irregular tetrahedron the first five slices are:
  1;
  --
  1,
  1, 2;
  -----
  1,
  1,
  1, 2
  1, 3;
  -----
  1,
  1,
  1,
  1, 2,
  1, 2,
  1, 3,
  1, 2, 4;
  --------
  1,
  1,
  1,
  1,
  1,
  1, 2,
  1, 2,
  1, 2,
  1, 3,
  1, 3,
  1, 2, 4,
  1, 5;
--------
The slices of the tetrahedron appear in the upper zone of the following table (formed by three zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
| D | A027750 |     |       |         |           |  1          |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A027750 |     |       |         |  1        |  1 2        |
| I | A027750 |     |       |         |  1        |  1 2        |
| S | A027750 |     |       |         |  1        |  1 2        |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A027750 |     |       |  1      |  1 2      |  1   3      |
| S | A027750 |     |       |  1      |  1 2      |  1   3      |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A027750 |     |  1    |  1 2    |  1   3    |  1 2   4    |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
| L | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
| I |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| N | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| K |         |  |  |  |\|  |  |\|\|  |  |\|\|\|  |  |\|\|\|\|  |
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
| A |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| R |         |     |       |  3      |  3 1      |  3 1 1      |
| T |         |     |       |         |  2 2      |  2 2 1      |
| I |         |     |       |         |  4        |  4 1        |
| T |         |     |       |         |           |  3 2        |
| I |         |     |       |         |           |  5          |
| O |         |     |       |         |           |             |
| N |         |     |       |         |           |             |
| S |         |     |       |         |           |             |
|---|---------|-----|-------|---------|-----------|-------------|
.
The table is essentially the same table of A340032 but here, in the upper zone, every row is A027750 instead of A127093.
Also the above table is the table of A338156 upside down.
The connection with the tower described in A221529 is as follows (n = 7):
|--------|------------------------|
| Level  |                        |
| in the | 7th slice of divisors  |
| tower  |                        |
|--------|------------------------|
|  11    |   1,                   |
|  10    |   1,                   |
|   9    |   1,                   |
|   8    |   1,                   |
|   7    |   1,                   |
|   6    |   1,                   |
|   5    |   1,                   |
|   4    |   1,                   |
|   3    |   1,                   |
|   2    |   1,                   |
|   1    |   1,                   |
|--------|------------------------|
|   7    |   1, 2,                |
|   6    |   1, 2,                |
|   5    |   1, 2,                |
|   4    |   1, 2,                |
|   3    |   1, 2,                |
|   2    |   1, 2,                |
|   1    |   1, 2,                |
|--------|------------------------|
|   5    |   1,    3,             |
|   4    |   1,    3,             |
|   3    |   1,    3,             |
|   2    |   1,    3,             |      Level
|   1    |   1,    3,             |             _
|--------|------------------------|       11   | |
|   3    |   1, 2,    4,          |       10   | |
|   2    |   1, 2,    4,          |        9   | |
|   1    |   1, 2,    4,          |        8   |_|_
|--------|------------------------|        7   |   |
|   2    |   1,          5,       |        6   |_ _|_
|   1    |   1,          5,       |        5   |   | |
|--------|------------------------|        4   |_ _|_|_
|   1    |   1, 2, 3,       6,    |        3   |_ _ _| |_
|--------|------------------------|        2   |_ _ _|_ _|_ _
|   1    |   1,                7; |        1   |_ _ _ _|_|_ _|
|--------|------------------------|
             Figure 1.                            Figure 2.
                                                Lateral view
                                                of the tower.
.
                                                _ _ _ _ _ _ _
                                               |_| | | | |   |
                                               |_ _|_| | |   |
                                               |_ _|  _|_|   |
                                               |_ _ _|    _ _|
                                               |_ _ _|  _|
                                               |       |
                                               |_ _ _ _|
.
                                                  Figure 3.
                                                  Top view
                                                of the tower.
.
Figure 1 shows the terms of the 7th row of the triangle arranged as the 7th slice of the tetrahedron. The left hand column (see figure 1) gives the level of the sum of the divisors in the tower (see figures 2 and 3).
		

Crossrefs

Programs

  • Mathematica
    A340035row[n_]:=Flatten[Array[ConstantArray[Divisors[#],PartitionsP[n-#]]&,n]];
    nrows=7;Array[A340035row,nrows] (* Paolo Xausa, Jun 20 2022 *)
Previous Showing 21-30 of 287 results. Next