cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A332085 Number of ordered pairs of divisors of n, (d1,d2), such that d1 is prime and d1 <= d2.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 3, 2, 5, 1, 9, 1, 5, 5, 4, 1, 9, 1, 8, 5, 5, 1, 13, 2, 5, 3, 8, 1, 18, 1, 5, 5, 5, 5, 15, 1, 5, 5, 12, 1, 17, 1, 8, 9, 5, 1, 17, 2, 9, 5, 8, 1, 13, 5, 12, 5, 5, 1, 29, 1, 5, 9, 6, 5, 17, 1, 8, 5, 18, 1, 21, 1, 5, 9, 8, 5, 17, 1, 16, 4, 5, 1, 28, 5, 5, 5, 11, 1, 30
Offset: 1

Views

Author

Wesley Ivan Hurt, Aug 22 2020

Keywords

Examples

			a(7) = 1; There are two divisors of 7: {1,7}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (7,7). So a(7) = 1.
a(8) = 3; There are 4 divisors of 8: {1,2,4,8}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (2,2), (2,4) and (2,8). So a(8) = 3.
a(9) = 2; There are three divisors of 9: {1,3,9}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (3,3) and (3,9). So a(9) = 2.
a(10) = 5; There are four divisors of 10: {1,2,5,10}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (2,2), (2,5), (2,10), (5,5) and (5,10). So a(10) = 5.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 100}]
  • PARI
    row(n) = my(d=divisors(n)); vector(n, k, #select(x->(x>=k), d)); \\ A135539
    a(n) = my(v=row(n)); sumdiv(n, d, if (isprime(d), v[d])); \\ Michel Marcus, May 24 2025

Formula

a(n) = Sum_{d1|n, d2|n, d1 is prime, d1 <= d2} 1.
a(n) = A337320(n) + omega(n).
a(n) = Sum_{p|n, p prime} A135539(n,p). - Ridouane Oudra, May 24 2025
a(n) = A248577(n) - A337322(n). - Ridouane Oudra, May 30 2025

A086670 Sum of floor(d/2) where d is a divisor of n.

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 3, 7, 5, 8, 5, 13, 6, 11, 10, 15, 8, 18, 9, 20, 14, 17, 11, 29, 14, 20, 18, 27, 14, 34, 15, 31, 22, 26, 22, 44, 18, 29, 26, 44, 20, 46, 21, 41, 36, 35, 23, 61, 27, 45, 34, 48, 26, 58, 34, 59, 38, 44, 29, 82, 30, 47, 49, 63, 40, 70, 33, 62, 46, 70, 35, 96, 36, 56
Offset: 1

Views

Author

Jon Perry, Jul 27 2003

Keywords

Comments

Inverse Mobius transform of A004526. - R. J. Mathar, Jan 19 2009

Examples

			10 has divisors 1,2,5,10. floor(d/2) gives 0,1,2,5, therefore a(10)=8.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Floor[Divisors[n]/2]],{n,80}] (* Harvey P. Dale, Feb 13 2023 *)
  • PARI
    for (n=1,100,s=0; fordiv(i=n,i,s+=floor(i/2)); print1(","s))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f) - (numdiv(f)/(valuation(n, 2)+1)))>>1 \\ David A. Corneth, Apr 15 2022 using Franklin T. Adams-Watters's formula

Formula

G.f.: Sum_{n>=1} floor(n/2)*x^n/(1-x^n). - Joerg Arndt, Jan 30 2011
a(n) = (A000203(n) - A001227(n)) / 2. - Franklin T. Adams-Watters, Jan 05 2012
G.f.: Sum_{k>=1} x^(2*k) / ((1 + x^k) * (1 - x^k)^2). - Ilya Gutkovskiy, Aug 02 2021
a(n) = Sum_{i=1..floor(n/2)} A135539(n,2*i). - Ridouane Oudra, Apr 15 2022

A143356 A051731 * A006218.

Original entry on oeis.org

1, 4, 6, 12, 11, 23, 17, 32, 29, 41, 30, 66, 38, 61, 61, 82, 53, 104, 61, 115, 92, 107, 77, 170, 98, 132, 124, 170, 104, 216, 114, 201, 158, 183, 158, 287, 143, 210, 193, 293, 161, 318, 171, 291, 266, 266, 189, 418, 218, 335, 269, 357, 220, 426, 271, 429, 309, 354, 250
Offset: 1

Views

Author

Gary W. Adamson, Aug 10 2008

Keywords

Examples

			a(4) = 12 = sum of row 4 terms of triangle A143355: (7, + 3 + 1 + 1).
a(4) = 12 = (1, 1, 0, 1) dot (1, 3, 5, 8) = (1 + 3 + 0 + 8), where (1, 1, 0, 1) = row 4 of A051731 and A006218 = (1, 3, 5, 8, 10, 14,...).
		

Crossrefs

Programs

  • PARI
    row(n) = my(d=divisors(n)); vector(n, k, #select(x->(x>=k), d)); \\ A135539
    a(n) = my(v=row(n)); sum(i=1, n, numdiv(i)*v[i]); \\ Michel Marcus, Jul 26 2022

Formula

Inverse Mobius transform (A051731) of A006218. Row sums of triangle A143355.
a(n) = Sum_{i=1..n} tau(i)*A135539(n,i). - Ridouane Oudra, Jul 26 2022
a(n) = Sum_{d|n} A006218(d). - Ridouane Oudra, Jul 27 2022

Extensions

Corrected typo in A-number in formula; added more terms - R. J. Mathar, Jan 19 2009

A320941 Expansion of Sum_{k>=1} x^k*(1 + x^k)/(1 - x^k)^4.

Original entry on oeis.org

1, 6, 15, 36, 56, 111, 141, 240, 300, 446, 507, 791, 820, 1161, 1310, 1736, 1786, 2505, 2471, 3346, 3466, 4307, 4325, 5895, 5581, 7026, 7230, 8905, 8556, 11246, 10417, 13176, 13050, 15476, 15106, 19391, 17576, 21495, 21374, 25690, 23822, 30162, 27435, 33707, 32990, 37841, 35721
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 24 2018

Keywords

Comments

Inverse Möbius transform of square pyramidal numbers (A000330).

Crossrefs

Programs

  • Maple
    a:=series(add(x^k*(1+x^k)/(1-x^k)^4,k=1..100),x=0,48): seq(coeff(a,x,n),n=1..47); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 47; Rest[CoefficientList[Series[Sum[x^k (1 + x^k)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[d (d + 1) (2 d + 1)/6, {d, Divisors[n]}], {n, 47}]
    Table[(DivisorSigma[1, n] + 3 DivisorSigma[2, n] + 2 DivisorSigma[3, n])/6, {n, 47}]
  • PARI
    a(n) = my(f = factor(n)); (2*sigma(f, 3) + 3*sigma(f, 2) + sigma(f, 1)) / 6; \\ Amiram Eldar, Jan 03 2025

Formula

G.f.: Sum_{k>=1} A000330(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} d*(d + 1)*(2*d + 1)/6.
a(n) = (A000203(n) + 3*A001157(n) + 2*A001158(n))/6.
a(n) = Sum_{i=1..n} i^2*A135539(n,i). - Ridouane Oudra, Jul 22 2022
From Amiram Eldar, Jan 03 2025: (Start)
Dirichlet g.f.: zeta(s) * (2*zeta(s-3) + 3*zeta(s-2) + zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/12) * n^4. (End)
Previous Showing 21-24 of 24 results.