cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 86 results. Next

A382969 The excess of the n-th noncubefree number.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 3, 2, 2, 5, 3, 3, 3, 2, 4, 2, 3, 3, 2, 2, 6, 2, 2, 4, 2, 4, 3, 2, 3, 2, 2, 5, 3, 3, 4, 4, 2, 3, 4, 2, 2, 7, 2, 2, 3, 2, 5, 2, 2, 3, 2, 5, 4, 2, 3, 2, 2, 2, 4, 3, 3, 2, 2, 2, 6, 3, 4, 3, 2, 4, 2, 5, 2, 5, 2, 2, 3, 2, 4, 4, 2, 3, 3, 3, 8, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2025

Keywords

Examples

			a(1) = 2 since the 1st noncubefree number is A046099(1) = 8 = 2^3. It has 3 prime factors when counted with multiplicity, and 1 distinct prime factor, so a(1) = 3 - 1 = 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[Max[e] < 3, Nothing, Total[e] - Length[e]]]; Array[f, 100]
  • PARI
    list(lim) = {my(e); for(k = 2, lim, e = factor(k)[,2]; if(vecmax(e) > 2, print1(vecsum(e) - #e, ", ")));}

Formula

a(n) = A046660(A046099(n)).
a(n) >= 2.
Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) = ((Sum_{p prime} 1/(p*(p-1))) - (1/zeta(3)) * (Sum_{p prime} (p-1)/(p^3-1))) / (1-1/zeta(3)) = 3.12223294188308957729... .

A284748 Decimal expansion of the sum of reciprocals of composite powers.

Original entry on oeis.org

2, 2, 6, 8, 4, 3, 3, 3, 0, 9, 5, 0, 2, 0, 4, 8, 7, 2, 1, 3, 5, 6, 3, 2, 5, 4, 0, 1, 4, 4, 0, 5, 7, 6, 0, 4, 3, 8, 1, 2, 5, 8, 6, 6, 3, 9, 1, 6, 8, 1, 3, 9, 5, 1, 6, 8, 8, 9, 9, 3, 9, 3, 2, 6, 4, 3, 2, 9, 0, 9, 7, 1, 5, 1, 0, 7, 6, 6, 6, 0, 2, 1, 6, 6, 2, 0, 1, 2, 4, 1, 1, 7, 6, 6, 7, 9, 1, 8, 1, 6, 7, 1, 0, 6, 2, 1
Offset: 0

Views

Author

Terry D. Grant, Apr 01 2017

Keywords

Examples

			Equals 1/(4*3)+1/(6*5)+1/(8*7)+1/(9*8)+1/(10*9)+...
= 0.226843330950204872135632540144057604...
		

Crossrefs

Decimal expansion of the sum of reciprocal powers: A136141 (primes), A154945 (primes at even powers), A152447 (semiprimes), A154932 (squarefree semiprimes).
Decimal expansion of the 'nonprime zeta function': A275647 (at 2), A278419 (at 3).

Programs

  • Mathematica
    RealDigits[ NSum[Zeta[n]-1-PrimeZetaP[n], {n, 2, Infinity}], 10, 105] [[1]]
  • PARI
    1 - sumeulerrat(1/(p*(p-1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{n>=1} 1/A002808(n)^(n+1) = (A275647 - 1) + (A278419 - 1) + ...
Equals Sum_{n>=1} 1/A002808(n)*(A002808(n)-1).
Equals Sum_{n>=2} (Zeta(n) - PrimeZeta(n) - 1) = Sum_{n>=2} CompositeZeta(n).
Equals 1 - A136141.

Extensions

More digits from Vaclav Kotesovec, Jan 13 2021

A336908 Decimal expansion of Sum_{p prime} (p^2 + p - 1)/(p^2 *(p - 1)^2).

Original entry on oeis.org

1, 6, 9, 5, 9, 7, 4, 2, 4, 3, 7, 5, 7, 3, 6, 4, 9, 1, 7, 2, 7, 5, 0, 7, 7, 2, 2, 5, 5, 4, 6, 1, 3, 4, 1, 6, 0, 6, 2, 5, 1, 0, 9, 9, 5, 3, 0, 1, 8, 6, 1, 1, 0, 8, 5, 2, 8, 3, 7, 7, 6, 4, 7, 2, 8, 9, 6, 7, 7, 9, 7, 1, 4, 2, 6, 6, 8, 7, 7, 7, 7, 8, 8, 1, 4, 7, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 07 2020

Keywords

Comments

The asymptotic variance of Omega(k) - omega(k) (A046660).
The asymptotic mean of Omega(k) - omega(k) is Sum_{p prime} 1/(p*(p-1)) = 0.773156... (A136141).

Examples

			1.695974243757364917275077225546134160625109953018611...
		

Crossrefs

Programs

  • Mathematica
    m = 100; RealDigits[PrimeZetaP[2] + NSum[n * PrimeZetaP[n], {n, 3, Infinity}, WorkingPrecision -> 2*m, NSumTerms -> 3*m], 10, m][[1]]
  • PARI
    sumeulerrat((p^2 + p - 1)/(p^2 *(p - 1)^2)) \\ Hugo Pfoertner, Aug 08 2020

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} d(k)^2 - ((1/m) * Sum_{k=1..m} d(k))^2, where d(k) = Omega(k) - omega(k) = A001222(k) - A001221(k) = A046660(k).
Equals P(2) + Sum_{k>=3} k*P(k), where P is the prime zeta function.
Equals A086242 -A085548 +A136141 . - R. J. Mathar, Aug 19 2022

A380688 Decimal expansion of Sum_{p prime} (p + 1)^3/((p - 1)^2*p^3).

Original entry on oeis.org

4, 1, 5, 8, 6, 3, 9, 6, 6, 8, 8, 9, 6, 3, 1, 1, 7, 9, 7, 9, 2, 1, 4, 4, 5, 6, 6, 4, 7, 3, 5, 1, 5, 5, 2, 1, 7, 8, 5, 3, 4, 7, 2, 4, 8, 6, 5, 2, 9, 9, 1, 8, 4, 8, 8, 5, 1, 2, 2, 0, 8, 5, 4, 7, 3, 0, 6, 8, 3, 4, 0, 8, 9, 6, 0, 9, 3, 2, 5, 2, 2, 9, 3, 1, 4, 0, 9, 8, 0, 3, 5, 7, 6, 4, 3, 6, 1, 9, 4, 7, 9, 3, 4
Offset: 1

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			4.1586396688963117979214456647351...
		

Crossrefs

Programs

  • PARI
    sumeulerrat((p + 1)^3/((p - 1)^2*p^3)) \\ Amiram Eldar, Apr 02 2025

Formula

Equals 5*A085548 + A085541 - 12*A136141 + 8*A152441.
Equals P(2) + 5*P(3) + Sum_{k>=4} (8*k - 20) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 02 2025

A380689 Decimal expansion of Sum_{p prime} (p + 1)^3/((p - 1)^3*p^2).

Original entry on oeis.org

7, 8, 6, 6, 6, 6, 5, 3, 9, 7, 3, 3, 1, 8, 0, 4, 4, 9, 2, 4, 7, 6, 9, 1, 9, 3, 2, 2, 4, 7, 0, 6, 9, 0, 8, 5, 5, 9, 7, 8, 9, 3, 4, 7, 1, 6, 7, 5, 8, 8, 5, 2, 0, 7, 5, 4, 9, 9, 4, 5, 3, 1, 2, 1, 8, 2, 8, 4, 1, 5, 0, 1, 4, 6, 4, 5, 6, 3, 1, 9, 4, 2, 6, 1, 5, 4, 2, 2, 6, 9, 7, 9, 0, 0, 1, 9, 3, 1, 6, 7, 6, 5, 3, 8, 3, 6
Offset: 1

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			7.86666539733180449247691932247069085597893471675885...
		

Crossrefs

Programs

  • PARI
    sumeulerrat((p + 1)^3/((p - 1)^3*p^2)) \\ Amiram Eldar, Apr 02 2025

Formula

Equals -A085548 + 6*A136141 - 4*A086242 + 8*A380840.
Equals P(2) + Sum_{k>=3} (4*k^2 - 16*k + 18) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 02 2025

A382553 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p^2).

Original entry on oeis.org

2, 8, 0, 9, 9, 9, 0, 7, 6, 6, 9, 0, 1, 1, 0, 5, 3, 0, 6, 9, 5, 0, 6, 1, 5, 7, 5, 6, 4, 2, 8, 0, 2, 8, 4, 2, 1, 1, 5, 3, 4, 8, 6, 3, 1, 2, 4, 8, 8, 3, 7, 7, 8, 3, 8, 2, 3, 5, 9, 6, 1, 3, 1, 5, 2, 8, 9, 8, 2, 6, 8, 3, 5, 2, 6, 9, 9, 9, 3, 3, 4, 2, 1, 1, 2, 6, 7, 6, 7, 9, 1, 2, 4, 8, 5, 3, 3, 3, 6
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.2809990766901105306950615756428028421153486312488377838...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^2*p^2)) \\ Amiram Eldar, Apr 01 2025

Formula

Equals A085548 - 2*A136141 + A086242.
Equals Sum_{k>=4} (k-3) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025

A382557 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p^3).

Original entry on oeis.org

1, 3, 4, 8, 5, 2, 4, 6, 6, 9, 8, 0, 8, 2, 4, 4, 3, 7, 7, 6, 0, 3, 5, 0, 7, 9, 5, 2, 8, 4, 8, 1, 5, 0, 8, 1, 6, 4, 5, 2, 5, 0, 7, 6, 0, 3, 3, 1, 6, 9, 3, 4, 4, 7, 1, 3, 7, 6, 8, 1, 0, 1, 1, 2, 2, 5, 0, 7, 0, 2, 7, 1, 9, 2, 9, 8, 0, 6, 3, 9, 8, 4, 6, 2, 0, 6, 0, 6, 6, 5, 1, 9, 3, 4, 1, 1, 9
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.1348524669808244377603507952848150816452507...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^2*p^3)) \\ Amiram Eldar, Apr 01 2025

Formula

Equals 2*A085548 + A085541 - 3*A136141 + A086242.
Equals Sum_{k>=5} (k-4)*P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025

A382560 Decimal expansion of Sum_{p prime} 1/((p - 1)^3*p).

Original entry on oeis.org

5, 4, 5, 6, 2, 0, 7, 7, 2, 0, 5, 9, 7, 3, 9, 8, 8, 6, 8, 8, 0, 3, 9, 8, 1, 3, 5, 6, 1, 5, 6, 3, 3, 0, 9, 8, 0, 8, 3, 9, 0, 6, 1, 1, 1, 4, 3, 2, 9, 8, 0, 8, 4, 4, 8, 7, 7, 6, 4, 0, 8, 5, 5, 4, 1, 6, 0, 0, 6, 9, 0, 5, 8, 0, 2, 7, 2, 3, 5, 7, 3, 8, 7, 6, 5, 4, 3, 3, 9, 3, 7, 7, 9, 4, 2, 3, 6, 5, 0, 5, 5, 3
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.545620772059739886880398135615633098083906111...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^3*p)) \\ Amiram Eldar, Apr 01 2025

Formula

Equals A136141 - A086242 + A380840.
Equals Sum_{k>=4} ((k-3)*(k-2)/2) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025

A382561 Decimal expansion of Sum_{p prime} 1/((p - 1)^3*p^3).

Original entry on oeis.org

1, 2, 9, 7, 6, 9, 2, 2, 8, 3, 8, 8, 8, 0, 4, 9, 1, 8, 4, 2, 4, 9, 8, 5, 7, 6, 4, 6, 8, 8, 0, 1, 5, 1, 7, 4, 3, 2, 3, 3, 0, 6, 7, 1, 9, 8, 5, 2, 4, 4, 9, 6, 1, 3, 9, 1, 6, 3, 6, 3, 7, 1, 2, 6, 6, 1, 9, 5, 3, 9, 5, 0, 3, 4, 5, 9, 1, 7, 8, 4, 1, 2, 0, 3, 2, 1, 5, 0, 4, 9, 4, 6, 1, 1, 5, 8, 3, 7, 7, 9, 2, 7
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.12976922838880491842498576468801517432330671985244961...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^3*p^3)) \\ Amiram Eldar, Apr 01 2025

Formula

Equals -3*A085548 - A085541 + 6*A136141 - 3*A086242 + A380840.
Equals Sum_{k>=6} ((k-5)*(k-4)/2) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025

A382565 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*(p + 1)).

Original entry on oeis.org

4, 1, 1, 6, 8, 5, 8, 4, 8, 5, 4, 5, 8, 1, 8, 0, 5, 1, 7, 3, 8, 7, 6, 1, 0, 5, 3, 2, 7, 5, 5, 4, 8, 0, 6, 0, 5, 2, 4, 0, 4, 9, 7, 9, 1, 1, 9, 8, 3, 4, 4, 6, 0, 3, 2, 3, 9, 2, 8, 6, 0, 0, 0, 9, 1, 5, 8, 3, 5, 0, 5, 7, 7, 5, 0, 2, 4, 2, 2, 9, 2, 1, 7, 6, 0, 7, 8, 3, 3, 4, 6, 2, 4, 1, 5, 5, 0, 7, 6, 9, 0, 1, 2, 7
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.411685848545818051738761053275548060524049791198344603239286000...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^2*(p+1))) \\ Amiram Eldar, Apr 02 2025

Formula

Equals -A136141/4 + A086242/2 - A179119/4.
Equals Sum_{k>=2} (k-1) * (P(2*k-1) + P(2*k)), where P is the prime zeta function. - Amiram Eldar, Apr 02 2025
Previous Showing 51-60 of 86 results. Next