cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A137915 Decimal expansion of 180*arccos(1/3)/Pi.

Original entry on oeis.org

7, 0, 5, 2, 8, 7, 7, 9, 3, 6, 5, 5, 0, 9, 3, 0, 8, 6, 3, 0, 7, 5, 4, 0, 0, 0, 6, 6, 0, 0, 3, 7, 5, 6, 4, 0, 3, 6, 9, 9, 3, 1, 5, 6, 8, 9, 9, 0, 9, 2, 0, 5, 1, 7, 1, 1, 8, 2, 8, 8, 9, 3, 6, 4, 3, 9, 6, 0, 2, 5, 3, 5, 6, 1, 9, 3, 9, 6, 0, 4, 4, 3, 6, 6, 3, 8, 1, 2, 8, 7, 1, 1, 6, 3, 9, 4, 1, 2, 3, 5, 4, 3, 1, 4, 8
Offset: 2

Views

Author

Rick L. Shepherd, Feb 22 2008

Keywords

Comments

Dihedral angle in degrees of regular tetrahedron.
Polar angle (or apex angle) of the cone that subtends exactly one third of the full solid angle. - Stanislav Sykora, Feb 20 2014

Examples

			70.52877936550930863075400066003756403699315689909205171182889364396025356...
		

Crossrefs

Cf. A137914 (same in radians).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 180*Arccos(1/3)/Pi(R); // G. C. Greubel, Aug 20 2018
  • Mathematica
    RealDigits[180 ArcCos[1/3]/Pi,10,120][[1]] (* Harvey P. Dale, Jul 13 2013 *)
  • PARI
    180*acos(1/3)/Pi
    

Formula

180*A137914/Pi = 180*arccos(1/3)/Pi.

A195729 Decimal expansion of arctan(3).

Original entry on oeis.org

1, 2, 4, 9, 0, 4, 5, 7, 7, 2, 3, 9, 8, 2, 5, 4, 4, 2, 5, 8, 2, 9, 9, 1, 7, 0, 7, 7, 2, 8, 1, 0, 9, 0, 1, 2, 3, 0, 7, 7, 8, 2, 9, 4, 0, 4, 1, 2, 9, 8, 9, 6, 7, 1, 9, 0, 5, 4, 6, 6, 9, 2, 3, 6, 7, 9, 7, 1, 5, 1, 9, 6, 5, 7, 3, 7, 2, 9, 3, 9, 5, 4, 9, 5, 7, 6, 0, 8, 9, 9, 0, 3, 2, 0, 4, 1, 7, 1, 5, 9
Offset: 1

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arctan(3) = 1.2490457723982544258299170772...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Arctan(3); // G. C. Greubel, Aug 20 2018
  • Mathematica
    r = 3;
    N[ArcTan[r], 100]
    RealDigits[%]  (* A195729 *)
    N[ArcCot[r], 100]
    RealDigits[%]  (* A105531 *)
    N[ArcSec[r], 100]
    RealDigits[%]  (* A137914 *)
    N[ArcCsc[r], 100]
    RealDigits[%]  (* A188615 *)
  • PARI
    atan(3) \\ Charles R Greathouse IV, Sep 23 2014
    

Formula

Equals arctan(1) + arctan(1/2). - Charles R Greathouse IV, Sep 23 2014
Equals arcsin(3/sqrt(10)) = arccos(sqrt(1/10)). - Amiram Eldar, Jul 11 2023

A383859 Central angle of the solution of the Tammes problem for 7 points on the sphere (in radians).

Original entry on oeis.org

1, 3, 5, 9, 0, 7, 9, 8, 9, 7, 6, 3, 2, 6, 6, 0, 1, 4, 1, 8, 8, 5, 0, 0, 2, 8, 8, 1, 6, 4, 7, 3, 3, 2, 7, 5, 3, 7, 8, 3, 0, 2, 1, 4, 5, 9, 8, 6, 1, 2, 8, 2, 4, 9, 1, 3, 2, 6, 2, 8, 0, 7, 8, 3, 7, 1, 5, 9, 7, 3, 9, 8, 1, 6, 5, 8, 7, 6, 9, 7, 2, 4, 2, 6
Offset: 1

Views

Author

R. J. Mathar, May 12 2025

Keywords

Examples

			1.3590798976326601418850028816473327537..
		

Crossrefs

Cf. A019819, A019669 (N=6), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383860 (N=14), A383861 (N=24).

Programs

  • Maple
    cos(4*Pi/9) ; %/(1-%) ; arccos(%) ; evalf(%,120) ;

Formula

cos( this ) = cos phi/(1- cos phi) where cos(phi)=A019819.

A383860 Central angle of the solution of the Tammes problem for 14 points on the sphere (in radians).

Original entry on oeis.org

9, 7, 1, 6, 3, 4, 7, 4, 2, 8, 8, 6, 2, 2, 4, 0, 7, 5, 9, 4, 1, 6, 9, 4, 9, 4, 7, 6, 2, 8, 5, 4, 1, 1, 3, 8, 1, 7, 9, 0, 1, 0, 6, 8, 2, 7, 6, 8, 4, 7, 8, 2, 0, 7, 0, 2, 6, 8, 0, 3, 3, 4, 8, 1, 3, 5, 4, 5, 5, 6, 5, 0, 7, 3, 5, 4, 4, 0, 3, 2, 9, 4, 6, 3, 9, 9, 5, 3, 9, 9, 4
Offset: 0

Views

Author

R. J. Mathar, May 12 2025

Keywords

Examples

			0.971634742886224075941694947628...
		

Crossrefs

Cf. A019669 (N=6), A383859 (N=7), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383861 (N=24).

Programs

  • Maple
    Digits := 120 ;
    g := proc(c,x)
        2*arccot(c*tan(x/2)) ;
    end proc:
    f := proc(x)
        local c,x1,x2,x3,x4,x5 ;
        c := cos(x)/(1-cos(x)) ;
        x1 := Pi-x ;
        x2 := g(c,x1) ;
        x3 := 2*Pi-2*x-x2 ;
        x4 := g(c,x3) ;
        x5 := 2*Pi-x-2*x4 ;
        2*Pi-2*x-x3-g(c,x5) ;
    end proc:
    x := 1.2 ; y := 1.21 ;
    for i from 1 to 500 do
        z := (x+y)/2 ;
        if f(z) > 0. then
            x := z ;
        else
            y := z ;
        end if;
        cos(z)/(1-cos(z)) ;
        if modp(i,20) =0 then
            arccos(%) ; evalf(%,120) ; print(%) ;
        end if;
        if x > y then
            break ;
        end if;
    end do:

A383861 Central angle of the solution of the Tammes problem for 24 points on the sphere (in radians).

Original entry on oeis.org

7, 6, 2, 5, 4, 7, 7, 3, 8, 7, 5, 0, 9, 8, 2, 5, 5, 6, 7, 4, 3, 1, 0, 6, 0, 9, 2, 1, 1, 4, 8, 8, 2, 8, 1, 8, 0, 6, 9, 1, 3, 9, 1, 6, 3, 6, 8, 6, 5, 5, 2, 2, 9, 4, 0, 5, 6, 6, 1, 4, 0, 6, 6, 5, 5, 5, 8, 6, 3, 8, 1, 8, 5, 9, 4, 2, 4, 3, 1, 2, 9, 4, 1, 8, 0, 2, 4, 4, 8, 6, 0, 4, 5, 9, 2, 2, 9, 6, 4, 9, 5, 7, 7, 9, 3, 5, 8, 9, 9, 8, 0, 6, 4, 2
Offset: 0

Views

Author

R. J. Mathar, May 12 2025

Keywords

Examples

			0.762547738750982556743106092114...
		

Crossrefs

Cf. A058265, A019669 (N=6), A383859 (N=7), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383860 (N=14).

Programs

  • Maple
    t := (1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3 ; arccos((t-1)/(3-t)) ; evalf(%,120);

Formula

cos( this ) = (t-1)/(3-t) where t=A058265.

A202473 Decimal expansion of the surface area of a unit Reuleaux triangle.

Original entry on oeis.org

2, 9, 7, 5, 4, 7, 1, 7, 1, 6, 5, 8, 4, 4, 0, 1, 6, 2, 9, 2, 7, 2, 4, 2, 1, 8, 5, 7, 7, 7, 2, 2, 5, 0, 3, 1, 0, 7, 9, 1, 2, 3, 5, 0, 2, 6, 6, 0, 9, 1, 3, 9, 4, 6, 4, 7, 9, 9, 6, 8, 6, 7, 3, 2, 5, 1, 0, 6, 6, 9, 5, 8, 9, 6, 8, 1, 0, 6, 2, 4, 0, 7, 6, 6, 5, 7, 4, 9, 4, 3, 9, 6, 6, 1, 4, 3, 9, 9, 6, 3, 3, 5, 6, 1, 8
Offset: 1

Views

Author

Eric W. Weisstein, Dec 19 2011

Keywords

Examples

			2.9754717165844016292...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[8*Pi - 18*ArcCos[1/3], 10, 100][[1]]
  • PARI
    8*Pi - 18*acos(1/3) \\ Stefano Spezia, May 26 2025

Formula

Equals 8*Pi - 18*arccos(1/3).

A386435 Decimal expansion of the largest dihedral angle, in radians, in a triangular bipyramid (Johnson solid J_12).

Original entry on oeis.org

2, 4, 6, 1, 9, 1, 8, 8, 3, 4, 6, 8, 1, 5, 4, 9, 3, 6, 4, 2, 6, 9, 8, 5, 8, 3, 5, 6, 4, 9, 5, 9, 7, 4, 7, 5, 1, 4, 2, 0, 6, 8, 0, 0, 1, 8, 7, 1, 0, 1, 8, 9, 6, 7, 8, 1, 1, 1, 0, 9, 6, 6, 6, 7, 3, 2, 7, 9, 8, 4, 6, 2, 8, 9, 5, 6, 5, 1, 2, 1, 7, 5, 7, 0, 6, 5, 0, 3, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 20 2025

Keywords

Comments

Also the largest dihedral angle in a triangular orthobicupola (Johnson solid J_27) and the second largest dihedral angle in an augmented truncated tetrahedron (Johnson solid J_65).

Examples

			2.461918834681549364269858356495974751420680018710...
		

Crossrefs

Cf. A137914 (J_12 smallest dihedral angle).
Cf. A020775 (J_12 volume), A104956 (J_12 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[-7/9], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["J12", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-7/9).

A289505 Decimal expansion of arcsec(3)/(2*Pi).

Original entry on oeis.org

1, 9, 5, 9, 1, 3, 2, 7, 6, 0, 1, 5, 3, 0, 3, 6, 3, 5, 0, 8, 5, 4, 2, 7, 7, 7, 9, 6, 1, 1, 2, 1, 5, 4, 5, 5, 6, 5, 8, 3, 1, 4, 3, 2, 4, 7, 1, 9, 7, 0, 0, 1, 4, 3, 6, 4, 3, 9, 6, 9, 1, 4, 9, 0, 1, 1, 0, 0, 0, 7, 0, 4, 3, 3, 8, 7, 2, 1, 1, 2, 3, 4, 3, 5, 1, 0, 5, 9
Offset: 0

Views

Author

R. J. Mathar, Jul 07 2017

Keywords

Examples

			0.195913276015303635085427779611215...
		

Crossrefs

Programs

  • Maple
    arcsec(3)/2/Pi ; evalf(%) ;
  • Mathematica
    RealDigits[ArcSec[3]/(2 Pi),10,120][[1]] (* Harvey P. Dale, Jul 21 2021 *)
  • PARI
    acos(1/3)/(2*Pi) \\ Michel Marcus, Jul 07 2017
  • Python
    from mpmath import mp, asec, pi
    mp.dps=89
    print([int(z) for z in list(str(asec(3)/(2*pi))[2:-1])]) # Indranil Ghosh, Jul 07 2017
    

Formula

From Robert FERREOL, Mar 21 2018: (Start)
Equals arctan(2*sqrt(2))/(2*Pi).
Equals (1/(2*Pi))*Integral_{t>=sqrt(2)/4} 1/(1+t^2).
Equals Probability(X>sqrt(2)/4)/2, if X is a Cauchy distributed random variable of location parameter 0 and scale parameter 1.
Equals the asymptotic probability p that A is predominantly preferred to B and B predominantly preferred to C when n persons provide a preference list of three candidates A, B, C (with a uniform distribution on voter preferences); the asymptotic probability that A > B > C > A or A > C > B > A (where ">" means "predominantly preferred to") is 3p-1/2 = 8.77...% (Condorcet paradox); the contrary probability (existence of a Condorcet winner) is 3/2-3p = 91.226...%.
See Gehrlein link. (End)

A349605 Decimal expansion of the probability that the intersection of a cube with random plane that passes through its center is a hexagon.

Original entry on oeis.org

3, 5, 0, 9, 5, 9, 3, 1, 2, 1, 8, 3, 6, 4, 3, 6, 2, 1, 0, 2, 5, 1, 3, 3, 3, 5, 5, 3, 3, 4, 5, 8, 5, 4, 6, 7, 8, 9, 9, 7, 7, 1, 8, 9, 6, 6, 3, 6, 4, 0, 1, 7, 2, 3, 7, 2, 7, 6, 2, 9, 7, 8, 8, 1, 3, 2, 0, 0, 8, 4, 5, 2, 0, 6, 4, 6, 5, 3, 4, 8, 1, 2, 2, 1, 2, 7, 0, 9, 5, 7, 0, 5, 4, 6, 4, 7, 0, 7, 8, 4, 7, 7, 1, 6, 0
Offset: 0

Views

Author

Amiram Eldar, Nov 23 2021

Keywords

Comments

The normal to the random plane is in the direction from the center of the cube to a point uniformly chosen at random on the surface of a sphere whose center coincides with the center of the cube.

Examples

			0.35095931218364362102513335533458546789977189663640...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 - 6 * ArcSin[1/3] / Pi, 10, 100][[1]]
  • PARI
    1 - 6*asin(1/3)/Pi \\ Michel Marcus, Nov 23 2021

Formula

Equals 1 - 6*arcsin(1/3)/Pi.
Equals 6*arccos(1/3)/Pi - 2.
Previous Showing 11-19 of 19 results.