cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A137918 Array read by columns: T(n,m) = number of unlabeled graphs with n vertices and m unicyclic components.

Original entry on oeis.org

1, 2, 5, 13, 1, 33, 2, 89, 8, 240, 23, 1, 657, 74, 2, 1806, 220, 8, 5026, 674, 27, 1, 13999, 2011, 89, 2, 39260, 6038, 289, 8, 110381, 17980, 938, 27, 1, 311465, 53547, 2985, 94, 2, 880840, 158907, 9456, 309, 8, 2497405, 471225, 29722, 1035, 27, 1, 7093751
Offset: 3

Views

Author

Washington Bomfim, Mar 18 2008

Keywords

Examples

			Array begins:
m/n|3.4.5..6..7..8...9..10...11...12....13....14.....15.....16.....17......18
---|-------------------------------------------------------------------------
1..|1.2.5.13.33.89.240.657.1806.5026.13999.39260.110381.311465.880840.2497405
2..|.......1..2..8..23..74..220..674..2011..6038..17980..53547.158907..471225
3..|.................1...2....8...27....89...289....938...2985...9456...29722
4..|...............................1.....2.....8.....27.....94....309....1035
5..|..................................................1......2......8......27
6..|........................................................................1
-----------------------------------------------------------------------------
m/n|.....19.......20.......21........22........23.........24.........25....
---------------------------------------------------------------------------
1..|7093751.20187313.57537552.164235501.469406091.1343268050.3848223585....
2..|1394786..4124929.12185636..35972082.106111713..312835608..921809509....
3..|..92842...288509...892506...2749940...8443504...25845735...78897469....
4..|...3382....11040....35659....114614....365970....1163167....3678680....
5..|.....94......315.....1060......3507.....11570......37853.....123196....
6..|......2........8.......27........94.......315.......1067.......3537....
7..|........................1.........2.........8.........27.........94....
8..|.......................................................1..........2....
9..|.......................................................................
The first row is A001429. Sums of columns form A137917.
Both the 5th and the 6th rows of table T begin with the same values, 1, 2, 8, 27, 94 and 315.
This happen since the number of graphs with n vertices and m components is equal to the number of graphs with n+3j vertices and m+j components, n >= 3, j >= 1.
So T(5,16) = T(6,19), T(5,17) = T(6,20), T(5,18) = T(6,21) etc.
In the sequence A138386 one can see the first terms of the m-th row of table T as m tends to infinity.
Parts equal to 3 do not change the values taken by the product in the formula since if i = 3, binomial(f(i) + K_i - 1, K_i) = binomial(1 + K_i - 1, Ki) = 1.
Because of that we take i >= 4 in the formula.
		

Crossrefs

Formula

T(m, n) = sum over the partitions 3K_3 + ... + nK_n of n, whose smallest part is 3, that have exactly m parts of pi{4 <= i <= n}binomial(f(i) + K_i - 1, K_i), where f(i) is A001429(i).
For example, T(3,12) = T(4,15) = 27. The partitions of 12 of the form 3K_3 + ... + nK_n satisfying the restrictions are 4*3, 5+4+3 and 6+3*2. With n = 15 they are 4*3+3, 5+4+3*2 and 6+3*3. The partitions of 12 can be used to count the graphs in both cases, i.e., n = 12 and n = 15.
The partition 4*3 corresponds to binomial(2+3-1, 3), or 4 graphs. The partition 5+4+3 gives binomial(5,1) * binomial(2,1) or 10 graphs. Lastly, 6+3*2 corresponds to 13 graphs. Note that f(3) = 1, f(4) = 2, f(5) = 5 and f(6) = 13.

Extensions

Edited by N. J. A. Sloane, Mar 21 2008
More terms from Alois P. Heinz, Jun 25 2014

A369147 Number of unlabeled loop-graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 7, 52, 411, 4440, 73886, 2128608, 111533208, 10812478194, 1945437194308, 650378721118910, 404749938336301313, 470163239887698682289, 1022592854829028310302180, 4177826139658552046624979658, 32163829440870460348768017832607, 468021728889827507080865185809438918
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Examples

			The a(0) = 0 through a(3) = 7 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{3},{1,2}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we have A322700, labeled A322661.
The complement for exactly n edges is A368984, labeled A333331 (maybe).
The labeled complement is A369140, covering case of A368927.
The labeled version is A369142, covering case of A369141.
This is the covering case of A369146.
The complement is counted by A369200, covering case of A369145.
Without loops we have A369202, covering case of A140637.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, labeled A006125 (shifted left).
A002494 counts unlabeled covering graphs, labeled A006129.
A007716 counts non-isomorphic multiset partitions, connected A007718.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,4}]

Formula

First differences of A369146.
a(n) = A322700(n) - A369200(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A369200 Number of unlabeled loop-graphs covering n vertices such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 1, 3, 7, 18, 43, 112, 282, 740, 1940, 5182, 13916, 37826, 103391, 284815, 788636, 2195414, 6137025, 17223354, 48495640, 136961527, 387819558, 1100757411, 3130895452, 8922294498, 25470279123, 72823983735, 208515456498, 597824919725, 1716072103910, 4931540188084
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Comments

These are covering loop-graphs with at most one cycle (unicyclic) in each connected component.

Examples

			Representatives of the a(1) = 1 through a(4) = 18 loop-graphs (loops shown as singletons):
  {{1}}  {{1,2}}      {{1},{2,3}}          {{1,2},{3,4}}
         {{1},{2}}    {{1,2},{1,3}}        {{1},{2},{3,4}}
         {{1},{1,2}}  {{1},{2},{3}}        {{1},{1,2},{3,4}}
                      {{1},{2},{1,3}}      {{1},{2,3},{2,4}}
                      {{1},{1,2},{1,3}}    {{1},{2},{3},{4}}
                      {{1},{1,2},{2,3}}    {{1,2},{1,3},{1,4}}
                      {{1,2},{1,3},{2,3}}  {{1,2},{1,3},{2,4}}
                                           {{1},{2},{3},{1,4}}
                                           {{1},{2},{1,3},{1,4}}
                                           {{1},{2},{1,3},{2,4}}
                                           {{1},{2},{1,3},{3,4}}
                                           {{1},{1,2},{1,3},{1,4}}
                                           {{1},{1,2},{1,3},{2,4}}
                                           {{1},{1,2},{2,3},{2,4}}
                                           {{1},{1,2},{2,3},{3,4}}
                                           {{1},{2,3},{2,4},{3,4}}
                                           {{1,2},{1,3},{1,4},{2,3}}
                                           {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

Without the choice condition we have A322700, labeled A322661.
Without loops we have A368834, covering case of A134964.
For exactly n edges we have A368984, labeled A333331 (maybe).
The labeled version is A369140, covering case of A368927.
The labeled complement is A369142, covering case of A369141.
This is the covering case of A369145.
The complement is counted by A369147, covering case of A369146.
The complement without loops is A369202, covering case of A140637.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, labeled A006125 (shifted left).
A006129 counts covering graphs, unlabeled A002494.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A133686 counts choosable labeled graphs, covering A367869.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]

Formula

First differences of A369145.
Euler transform of A369289 with A369289(1) = 1. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A369201 Number of unlabeled simple graphs with n vertices and n edges such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 7, 30, 124, 507, 2036, 8216, 33515, 138557, 583040, 2503093, 10985364, 49361893, 227342301, 1073896332, 5204340846, 25874724616, 131937166616, 689653979583, 3693193801069, 20247844510508, 113564665880028, 651138092719098, 3813739129140469
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Comments

These are graphs with n vertices and n edges having at least two cycles in the same component.

Examples

			The a(0) = 0 through a(6) = 7 simple graphs:
  .  .  .  .  .  {{12}{13}{14}{23}{24}}  {{12}{13}{14}{15}{23}{24}}
                                         {{12}{13}{14}{15}{23}{45}}
                                         {{12}{13}{14}{23}{24}{34}}
                                         {{12}{13}{14}{23}{24}{35}}
                                         {{12}{13}{14}{23}{24}{56}}
                                         {{12}{13}{14}{23}{25}{45}}
                                         {{12}{13}{14}{25}{35}{45}}
		

Crossrefs

Without the choice condition we have A001434, covering A006649.
The labeled version without choice is A116508, covering A367863, A367862.
The complement is counted by A137917, labeled A137916.
For any number of edges we have A140637, complement A134964.
For labeled set-systems we have A368600.
The case with loops is A368835, labeled A368596.
The labeled version is A369143, covering A369144.
A006129 counts covering graphs, unlabeled A002494.
A007716 counts unlabeled multiset partitions, connected A007718.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable simple graphs, unlabeled A005703.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{2}],{n}],Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,5}]

Formula

a(n) = A001434(n) - A137917(n).

Extensions

a(25) onwards from Andrew Howroyd, Feb 02 2024

A369202 Number of unlabeled simple graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 2, 13, 95, 826, 11137, 261899, 11729360, 1006989636, 164072166301, 50336940172142, 29003653625802754, 31397431814146891910, 63969589218557753075156, 245871863137828405124380563, 1787331789281458167615190373076, 24636021675399858912682459601585276
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Comments

These are simple graphs covering n vertices such that some connected component has at least two cycles.

Examples

			Representatives of the a(4) = 2 and a(5) = 13 simple graphs:
  {12}{13}{14}{23}{24}      {12}{13}{14}{15}{23}{24}
  {12}{13}{14}{23}{24}{34}  {12}{13}{14}{15}{23}{45}
                            {12}{13}{14}{23}{24}{35}
                            {12}{13}{14}{23}{25}{45}
                            {12}{13}{14}{25}{35}{45}
                            {12}{13}{14}{15}{23}{24}{25}
                            {12}{13}{14}{15}{23}{24}{34}
                            {12}{13}{14}{15}{23}{24}{35}
                            {12}{13}{14}{23}{24}{35}{45}
                            {12}{13}{14}{15}{23}{24}{25}{34}
                            {12}{13}{14}{15}{23}{24}{35}{45}
                            {12}{13}{14}{15}{23}{24}{25}{34}{35}
                            {12}{13}{14}{15}{23}{24}{25}{34}{35}{45}
		

Crossrefs

Without the choice condition we have A002494, labeled A006129.
The connected case is A140636.
This is the covering case of A140637, complement A134964.
The labeled version is A367868, complement A367869.
The complement is counted by A368834.
The version with loops is A369147, complement A369200.
A005703 counts unlabeled connected choosable simple graphs, labeled A129271.
A007716 counts unlabeled multiset partitions, connected A007718.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A283877 counts unlabeled set-systems, connected A300913.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,5}]

Formula

First differences of A140637.
a(n) = A002494(n) - A368834(n).

A368834 Number of unlabeled simple graphs covering n vertices such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 0, 1, 2, 5, 10, 27, 62, 165, 423, 1140, 3060, 8427, 23218, 64782, 181370, 511004, 1444285, 4097996, 11656644, 33243265, 94992847, 271953126, 779790166, 2239187466, 6438039076, 18532004323, 53400606823, 154024168401, 444646510812, 1284682242777
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Examples

			Representatives of the a(2) = 1 through a(5) = 10 simple graphs:
  {12}  {12}{13}      {12}{34}          {12}{13}{45}
        {12}{13}{23}  {12}{13}{14}      {12}{13}{14}{15}
                      {12}{13}{24}      {12}{13}{14}{25}
                      {12}{13}{14}{23}  {12}{13}{23}{45}
                      {12}{13}{24}{34}  {12}{13}{24}{35}
                                        {12}{13}{14}{15}{23}
                                        {12}{13}{14}{23}{25}
                                        {12}{13}{14}{23}{45}
                                        {12}{13}{14}{25}{35}
                                        {12}{13}{24}{35}{45}
		

Crossrefs

Without the choice condition we have A002494, labeled A006129.
The connected case is A005703, labeled A129271.
This is the covering case of A134964, complement A140637.
The labeled version is A367869, complement A367868.
The version with loops is A369200, complement A369147.
The complement is counted by A369202.
A007716 counts unlabeled multiset partitions, connected A007718.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A283877 counts unlabeled set-systems, connected A300913.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]],{n,0,5}]

Formula

Euler transform of A005703 with A005703(1) = 0.
First differences of A134964.
a(n) = A002494(n) - A369202(n).

A368926 Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different element from each edge.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 1, 1, 2, 5, 3, 1, 1, 5, 12, 7, 3, 1, 1, 14, 29, 19, 8, 3, 1, 1, 35, 75, 47, 21, 8, 3, 1, 1, 97, 191, 127, 54, 22, 8, 3, 1, 1, 264, 504, 331, 149, 56, 22, 8, 3, 1, 1, 733, 1339, 895, 395, 156, 57, 22, 8, 3, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2024

Keywords

Comments

Also the number of unlabeled loop-graphs covering n vertices with k loops and n-k non-loops such that each connected component has the same number of edges as vertices.

Examples

			Triangle begins:
   1
   0  1
   0  1  1
   1  2  1  1
   2  5  3  1  1
   5 12  7  3  1  1
  14 29 19  8  3  1  1
  35 75 47 21  8  3  1  1
		

Crossrefs

The case of a unique choice is A106234, row sums A000081.
Column k = 0 is A137917, labeled version A137916.
Without the choice condition we have A368836.
The labeled version is A368924, row sums maybe A333331.
Row sums are A368984, complement A368835.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.
A322661 counts labeled covering half-loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Union[sysnorm /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k && Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]], {n,0,5},{k,0,n}]
  • PARI
    \\ TreeGf gives gf of A000081; G(n,1) is gf of A368983.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    G(n,y)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); 1 + (sum(d=1, n, eulerphi(d)/d*log(1/(1-g(d)))) + ((1+g(1))^2/(1-g(2))-1)/2 - (g(1)^2 + g(2)))/2 + (y-1)*g(1)}
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    T(n)={[Vecrev(p) | p <- Vec(EulerMTS(G(n,y) - 1))]}
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2024

Extensions

a(36) onwards from Andrew Howroyd, Jan 14 2024

A386399 Number of forests with at most n unlabeled nodes.

Original entry on oeis.org

1, 2, 4, 7, 13, 23, 43, 80, 156, 309, 638, 1348, 2949, 6607, 15206, 35720, 85625, 208588, 515787, 1291316, 3269194, 8355832, 21539988, 55942920, 146271594, 384746580, 1017522228, 2704227858, 7219183490, 19351410860, 52068524665, 140588391713, 380824067016
Offset: 0

Views

Author

Max Alekseyev, Jul 20 2025

Keywords

Crossrefs

Formula

G.f.: exp(sum_{k>0} B(x^k)/k ) / (1-x), where B(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + ... = C(x)-1 and C is the g.f. for A000055.
Previous Showing 21-28 of 28 results.