cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A356842 Numbers k such that the k-th composition in standard order does not cover an interval of positive integers (not gapless).

Original entry on oeis.org

9, 12, 17, 19, 24, 25, 28, 33, 34, 35, 39, 40, 48, 49, 51, 56, 57, 60, 65, 66, 67, 69, 70, 71, 73, 76, 79, 80, 81, 88, 96, 97, 98, 99, 100, 103, 104, 112, 113, 115, 120, 121, 124, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145
Offset: 1

Views

Author

Gus Wiseman, Sep 01 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and their corresponding standard compositions begin:
   9: (3,1)
  12: (1,3)
  17: (4,1)
  19: (3,1,1)
  24: (1,4)
  25: (1,3,1)
  28: (1,1,3)
  33: (5,1)
  34: (4,2)
  35: (4,1,1)
  39: (3,1,1,1)
  40: (2,4)
  48: (1,5)
  49: (1,4,1)
  51: (1,3,1,1)
  56: (1,1,4)
  57: (1,1,3,1)
  60: (1,1,1,3)
		

Crossrefs

See link for sequences related to standard compositions.
An unordered version is A073492, complement A073491.
These compositions are counted by the complement of A107428.
The complement is A356841.
The gapless but non-initial version is A356843, unordered A356845.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!nogapQ[stc[#]]&]

A356223 Position of n-th appearance of 2n in the sequence of prime gaps (A001223). If 2n does not appear at least n times, set a(n) = -1.

Original entry on oeis.org

2, 6, 15, 79, 68, 121, 162, 445, 416, 971, 836, 987, 2888, 1891, 1650, 5637, 5518, 4834, 9237, 8152, 10045, 21550, 20248, 20179, 29914, 36070, 24237, 53355, 52873, 34206, 103134, 90190, 63755, 147861, 98103, 117467, 209102, 206423, 124954, 237847, 369223
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2022

Keywords

Comments

Prime gaps (A001223) are the differences between consecutive prime numbers. They begin: 1, 2, 2, 4, 2, 4, 2, 4, 6, ...

Examples

			We need the first 15 prime gaps (1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6) before we reach the 3rd appearance of 6, so a(6) = 15.
		

Crossrefs

The first appearances are at A038664, seconds A356221.
Diagonal of A356222.
A001223 lists the prime gaps.
A073491 lists numbers with gapless prime indices.
A356224 counts divisors with gapless prime indices, complement A356225.
A356226 = gapless interval lengths of prime indices, run-lengths A287170.

Programs

  • Mathematica
    nn=1000;
    gaps=Differences[Array[Prime,nn]];
    Table[Position[gaps,2*n][[n,1]],{n,Select[Range[nn],Length[Position[gaps,2*#]]>=#&]}]

A356604 Number of integer compositions of n into odd parts covering an initial interval of odd positive integers.

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 5, 9, 13, 24, 40, 61, 101, 160, 257, 415, 679, 1103, 1774, 2884, 4656, 7517, 12165, 19653, 31753, 51390, 83134, 134412, 217505, 351814, 569081, 920769, 1489587, 2409992, 3899347, 6309059, 10208628, 16518910, 26729830, 43254212, 69994082
Offset: 0

Views

Author

Gus Wiseman, Aug 30 2022

Keywords

Examples

			The a(1) = 1 through a(8) = 13 compositions:
  (1)  (11)  (111)  (13)    (113)    (1113)    (133)      (1133)
                    (31)    (131)    (1131)    (313)      (1313)
                    (1111)  (311)    (1311)    (331)      (1331)
                            (11111)  (3111)    (11113)    (3113)
                                     (111111)  (11131)    (3131)
                                               (11311)    (3311)
                                               (13111)    (111113)
                                               (31111)    (111131)
                                               (1111111)  (111311)
                                                          (113111)
                                                          (131111)
                                                          (311111)
                                                          (11111111)
The a(9) = 24 compositions:
  (135)  (11133)  (1111113)  (111111111)
  (153)  (11313)  (1111131)
  (315)  (11331)  (1111311)
  (351)  (13113)  (1113111)
  (513)  (13131)  (1131111)
  (531)  (13311)  (1311111)
         (31113)  (3111111)
         (31131)
         (31311)
         (33111)
		

Crossrefs

The case of partitions is A053251, ranked by A356232 and A356603.
These compositions are ranked by the intersection of A060142 and A333217.
This is the odd initial case of A107428.
This is the odd restriction of A107429.
This is the normal/covering case of A324969 (essentially A000045).
The non-initial version is A356605.
A000041 counts partitions, compositions A011782.
A055932 lists numbers with prime indices covering an initial interval.
A066208 lists numbers with all odd prime indices, counted by A000009.

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[(#+1)/2]&]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Sep 01 2022

A195150 Number of divisors d of n such that d-1 does not divide n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3, 3, 1, 3, 1, 3, 3, 2, 1, 4, 2, 2, 3, 4, 1, 4, 1, 4, 3, 2, 3, 5, 1, 2, 3, 5, 1, 4, 1, 4, 5, 2, 1, 6, 2, 4, 3, 4, 1, 5, 3, 5, 3, 2, 1, 6, 1, 2, 5, 5, 3, 5, 1, 4, 3, 6, 1, 7, 1, 2, 5, 4, 3, 5, 1, 7, 4, 2, 1, 7, 3, 2
Offset: 1

Views

Author

Omar E. Pol, Sep 19 2011

Keywords

Comments

Define "subdivisor" of n to be the positive integer b such that b = d - 1, if d divides n and b does not divide n. For the list of subdivisors of n see A195153.
First occurrence of k is given in A173569. - Robert G. Wilson v, Sep 23 2011

Examples

			a(24) = 4 since the divisors of 24 are 1,2,3,4,6,8,12,24, so the subdivisors of 24 are 5,7,11,23 because 6-1 = 5, 8-1 = 7, 12-1 = 11 and 24-1 = 23. Note that the positive integers 1,2,3 are not subdivisors of 24 because they are divisors of 24.
		

Crossrefs

Programs

  • Haskell
    a195150 n = length [d | d <- [3..n], mod n d == 0, mod n (d-1) /= 0]
    -- Reinhard Zumkeller, Sep 23 2011
  • Mathematica
    f[n_] := Module[{d = Divisors[n]}, Length[Select[Rest[d-1], Mod[n, #] > 0 &]]]; Table[f[n], {n, 100}] (* T. D. Noe, Sep 22 2011 *)

Formula

a(n) = A137921(n) - 1. - Robert G. Wilson v, Sep 23 2001
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 3), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 18 2024

A195155 Number of divisors d of n such that d-1 also divides n or d-1 = 0.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 5, 1, 2
Offset: 1

Views

Author

Omar E. Pol, Sep 19 2011

Keywords

Comments

First differs from A055874 at a(20).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(`if`(d=1 or irem(n, d-1)=0, 1, 0), d=divisors(n)):
    seq(a(n), n=1..200);  # Alois P. Heinz, Oct 17 2011
  • Mathematica
    d1[n_]:=Module[{d=Rest[Divisors[n]]},Count[d,?(Divisible[n,#-1]&)]+1]; Array[d1, 90] (* _Harvey P. Dale, Oct 31 2013 *)
  • Python
    from itertools import pairwise
    from sympy import divisors
    def A195155(n): return 1 if n&1 else 1+sum(1 for a, b in pairwise(divisors(n)) if a+1==b) # Chai Wah Wu, Jun 09 2025

Formula

a(n) = A000005(n) - A195150(n).
a(n) = 1 + A129308(n).
a(2n-1) = 1; a(2n) = 1 + A007862(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Dec 31 2023
a(n) <= A038548(n) <= A000005(n). - Charles R Greathouse IV, Jun 09 2025

A356605 Number of integer compositions of n into odd parts covering an interval of odd positive integers.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 10, 15, 26, 41, 65, 104, 164, 262, 424, 687, 1112, 1792, 2898, 4677, 7556, 12197, 19699, 31836, 51466, 83234, 134593, 217674, 352057, 569452, 921165, 1490173, 2410784, 3900288, 6310436, 10210358, 16521108, 26733020, 43258086, 69999295
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2022

Keywords

Examples

			The a(1) = 1 through a(8) = 15 compositions:
  (1)  (11)  (3)    (13)    (5)      (33)      (7)        (35)
             (111)  (31)    (113)    (1113)    (133)      (53)
                    (1111)  (131)    (1131)    (313)      (1133)
                            (311)    (1311)    (331)      (1313)
                            (11111)  (3111)    (11113)    (1331)
                                     (111111)  (11131)    (3113)
                                               (11311)    (3131)
                                               (13111)    (3311)
                                               (31111)    (111113)
                                               (1111111)  (111131)
                                                          (111311)
                                                          (113111)
                                                          (131111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

These compositions are ranked by the intersection of A060142 and A356841.
Before restricting to odds we have A107428, initial A107429.
The not necessarily gapless version is A324969 (essentially A000045).
The strict case is A332032.
The initial case is A356604.
The case of partitions is A356737, initial A053251 (ranked by A356232).
A000041 counts partitions, compositions A011782.
A066208 lists numbers with all odd prime indices, counted by A000009.
A073491 lists numbers with gapless prime indices, initial A055932.

Programs

  • Mathematica
    nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], And@@OddQ/@#&&nogapQ[(#+1)/2]&]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Sep 01 2022

A173570 Where A174102 sets a new record.

Original entry on oeis.org

1, 3, 8, 15, 24, 36, 48, 72, 96, 140, 180, 280, 336, 420, 480, 672, 864, 900, 1008, 1080, 1260, 1980, 2340, 3744, 4032, 4680, 6048, 9450, 11088, 11880, 13440, 16632, 17280, 30888, 32400, 33264, 33600, 44352, 46800, 47520, 63360, 66528, 71280, 84240
Offset: 1

Views

Author

Robert G. Wilson v, Feb 22 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ Split[ Divisors@n, #2 - #1 == 1 &] (* f(n) from Dr. Bobby R. Treat *); t = Table[0, {1000}]; k = 1; While[k < 10^9, a = f@k; If[a < 101 && t[[a]] == 0, t[[a]] = k; Print[{k, a}]]; k++ ]; lst = {1}; m = 1; While[m < 1001, If[ t[[m]] > lst[[ -1]], AppendTo[ lst, t[[m]]]]; m++ ]; lst

A356221 Position of second appearance of 2n in the sequence of prime gaps A001223; if 2n does not appear at least twice, a(n) = -1.

Original entry on oeis.org

3, 6, 11, 72, 42, 47, 62, 295, 180, 259, 297, 327, 446, 462, 650, 1315, 1059, 1532, 4052, 2344, 3732, 3861, 8805, 7234, 4754, 2810, 4231, 14124, 5949, 9834, 17200, 10229, 19724, 25248, 15927, 30765, 42673, 28593, 24554, 50523, 44227, 44390, 29040, 89715, 47350
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2022

Keywords

Comments

Prime gaps (A001223) are the differences between consecutive prime numbers. They begin: 1, 2, 2, 4, 2, 4, 2, 4, 6, ...

Crossrefs

The position of the first (instead of second) appearance of 2n is A038664.
Column k = 2 of A356222.
The position of the n-th appearance of 2n is A356223.
A001223 lists the prime gaps, reduced A028334.
A073491 lists numbers with gapless prime indices.
A274121 counts appearances of the n-th prime gap in those prior.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    nn=1000;
    gaps=Differences[Array[Prime,nn]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[gaps,2*n][[2,1]],{n,mnrm[Select[Range[nn],Length[Position[gaps,2*#]]>=2&]]}]

A137922 Numbers having exactly two divisors d such that d+1 is not a divisor.

Original entry on oeis.org

3, 4, 5, 6, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 23 2008

Keywords

Comments

A137921(a(n)) = 2;
a(n) = A000040(n-1) for n > 4.

Programs

Extensions

Corrected by Charles R Greathouse IV, Apr 19 2010

A356956 Numbers k such that the k-th composition in standard order is a gapless interval (in increasing order).

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 16, 20, 32, 52, 64, 72, 128, 256, 272, 328, 512, 840, 1024, 1056, 2048, 2320, 4096, 4160, 8192, 10512, 16384, 16512, 17440, 26896, 32768, 65536, 65792, 131072, 135232, 148512, 262144, 262656, 524288, 672800, 1048576, 1049600, 1065088, 1721376
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2022

Keywords

Comments

An interval such as {3,4,5} is a set of positive integers with all differences of adjacent elements equal to 1.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding intervals begin:
        0: ()
        1: (1)
        2: (2)
        4: (3)
        6: (1,2)
        8: (4)
       16: (5)
       20: (2,3)
       32: (6)
       52: (1,2,3)
       64: (7)
       72: (3,4)
      128: (8)
      256: (9)
      272: (4,5)
      328: (2,3,4)
      512: (10)
      840: (1,2,3,4)
		

Crossrefs

See link for sequences related to standard compositions.
These compositions are counted by A001227.
An unordered version is A073485, non-strict A073491 (complement A073492).
The initial version is A164894, non-strict A356843 (unordered A356845).
The non-strict version is A356841, initial A333217, counted by A107428.
A066311 lists gapless numbers.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    chQ[y_]:=Length[y]<=1||Union[Differences[y]]=={1};
    Select[Range[0,1000],chQ[stc[#]]&]
Previous Showing 21-30 of 31 results. Next