cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A323436 Number of plane partitions whose parts are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 5, 1, 4, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 4, 1, 7, 2, 2, 2, 8, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 7, 2, 4, 2, 3, 1, 7, 2, 5, 2, 2, 1, 8, 1, 2, 3, 11, 2, 4, 1, 3, 2, 4, 1, 12, 1, 2, 4, 3, 2, 4, 1, 7, 5, 2, 1, 8, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2019

Keywords

Comments

Number of ways to fill a Young diagram with the prime indices of n such that all rows and columns are weakly decreasing.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(120) = 12 plane partitions:
  32111
.
  311   321   3111   3211
  21    11    2      1
.
  31   32   311   321
  21   11   2     1
  1    1    1     1
.
  31   32
  2    1
  1    1
  1    1
.
  3
  2
  1
  1
  1
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
    Table[Length[Select[ptnplane[y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,100}]

A299925 Number of chains in Young's lattice from () to the partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 8, 4, 12, 16, 16, 16, 32, 40, 44, 8, 64, 44, 128, 52, 136, 96, 256, 40, 88, 224, 88, 152, 512, 204, 1024, 16, 384, 512, 360, 136, 2048, 1152, 1024, 152, 4096, 744, 8192, 416, 496, 2560, 16384, 96, 720, 496, 2624, 1088, 32768, 360, 1216, 504
Offset: 1

Views

Author

Gus Wiseman, Feb 21 2018

Keywords

Comments

a(n) is the number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions skew-partitions. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(9) = 12 tableaux:
1 3   1 2
2 4   3 4
.
1 3   1 2   1 2   1 2   1 1
2 3   3 3   2 3   1 3   2 3
.
1 2   1 2   1 1   1 1
2 2   1 2   2 2   1 2
.
1 1
1 1
The a(9) = 12 chains of Heinz numbers:
1<9,
1<2<9, 1<3<9, 1<4<9, 1<6<9,
1<2<3<9, 1<2<4<9, 1<2<6<9, 1<3<6<9, 1<4<6<9,
1<2<3<6<9, 1<2<4<6<9.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    hncQ[a_,b_]:=And@@GreaterEqual@@@Transpose[PadRight[{Reverse[primeMS[b]],Reverse[primeMS[a]]}]];
    chns[x_,y_]:=chns[x,y]=Join[{{x,y}},Join@@Function[c,Append[#,y]&/@chns[x,c]]/@Select[Range[x+1,y-1],hncQ[x,#]&&hncQ[#,y]&]];
    Table[Length[chns[1,n]],{n,30}]

A299926 a(n) is the number of normal generalized Young tableaux of size n with all rows and columns weakly increasing and all regions skew partitions.

Original entry on oeis.org

1, 4, 14, 60, 252, 1212, 5880, 30904, 166976, 952456, 5587840, 34217216, 215204960, 1401551376, 9360467760, 64384034784, 453328282624, 3274696185568, 24173219998912, 182546586425408
Offset: 1

Views

Author

Gus Wiseman, Feb 21 2018

Keywords

Comments

If y is an integer partition of n, a generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers.

Examples

			The a(3) = 14 tableaux:
1 2 3   1 2 2   1 1 2   1 1 1
.
1 3   1 2   1 2   1 2   1 1   1 1
2     3     2     1     2     1
.
1   1   1   1
2   2   1   1
3   2   2   1
		

Crossrefs

Programs

  • Mathematica
    undptns[y_]:=DeleteCases[Select[Tuples[Range[0,#]&/@y],OrderedQ[#,GreaterEqual]&],0,{2}];
    chn[y_]:=Join[{{{},y}},Join@@Function[c,Append[#,y]&/@chn[c]]/@Take[undptns[y],{2,-2}]];
    Table[Sum[Length[chn[y]],{y,IntegerPartitions[n]}],{n,8}]

A323438 Number of ways to fill a Young diagram with the prime indices of n such that all rows and columns are weakly increasing.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 3, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 4, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 4, 1, 4, 4, 2, 1, 12, 2, 3, 2, 4, 1, 5, 2, 7, 2, 2, 1, 10, 1, 2, 4, 11, 2, 4, 1, 4, 2, 4, 1, 13, 1, 2, 3, 4, 2, 4, 1, 12, 5, 2, 1, 10, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(96) = 19 tableaux:
  111112
.
  111   1111   1112   11111   11112
  112   12     11     2       1
.
  11   111   111   112   1111   1112
  11   11    12    11    1      1
  12   2     1     1     2      1
.
  11   11   111   112
  11   12   1     1
  1    1    1     1
  2    1    2     1
.
  11   12
  1    1
  1    1
  1    1
  2    1
.
  1
  1
  1
  1
  1
  2
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[primeMS,Join@@Permutations/@facs[n],{2}]];
    Table[Length[Select[ptnplane[y],And[And@@LessEqual@@@#,And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])]&]],{y,100}]

Formula

Sum_{A056239(n) = k} a(k) = A323450(n).

A104601 Triangle T(r,n) read by rows: number of n X n (0,1)-matrices with exactly r entries equal to 1 and no zero row or columns.

Original entry on oeis.org

1, 0, 2, 0, 4, 6, 0, 1, 45, 24, 0, 0, 90, 432, 120, 0, 0, 78, 2248, 4200, 720, 0, 0, 36, 5776, 43000, 43200, 5040, 0, 0, 9, 9066, 222925, 755100, 476280, 40320, 0, 0, 1, 9696, 727375, 6700500, 13003620, 5644800, 362880, 0, 0, 0, 7480, 1674840
Offset: 1

Views

Author

Ralf Stephan, Mar 27 2005

Keywords

Examples

			1
0,2
0,4,6
0,1,45,24
0,0,90,432,120
0,0,78,2248,4200,720
0,0,36,5776,43000,43200,5040
0,0,9,9066,222925,755100,476280,40320
0,0,1,9696,727375,6700500,13003620,5644800,362880
0,0,0,7480,1674840,37638036,179494350,226262400,71850240,3628800
		

Crossrefs

Right-edge diagonals include A000142, A055602, A055603. Row sums are in A104602.
Column sums are in A048291. The triangle read by columns = A055599.

Programs

  • Mathematica
    t[r_, n_] := Sum[ Sum[ (-1)^(2n - d - k/d)*Binomial[n, d]*Binomial[n, k/d]*Binomial[k, r], {d, Divisors[k]}], {k, r, n^2}]; Flatten[ Table[t[r, n], {r, 1, 10}, {n, 1, r}]] (* Jean-François Alcover, Jun 27 2012, from formula *)
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],Union[First/@#]==Union[Last/@#]==Range[k]&]],{n,6},{k,n}] (* Gus Wiseman, Nov 14 2018 *)

Formula

T(r, n) = Sum{l>=r, Sum{d|l, (-1)^(2n-d-l/d)*C(n, d)*C(n, l/d)*C(l, r) }}.
E.g.f.: Sum(((1+x)^n-1)^n*exp((1-(1+x)^n)*y)*y^n/n!,n=0..infinity). - Vladeta Jovovic, Feb 24 2008

A135588 Number of symmetric (0,1)-matrices with exactly n entries equal to 1 and no zero rows or columns.

Original entry on oeis.org

1, 1, 2, 6, 20, 74, 302, 1314, 6122, 29982, 154718, 831986, 4667070, 27118610, 163264862, 1013640242, 6488705638, 42687497378, 288492113950, 1998190669298, 14177192483742, 102856494496050, 762657487965086, 5771613810502002, 44555989658479726, 350503696871063138
Offset: 0

Views

Author

Vladeta Jovovic, Feb 25 2008, Mar 03 2008, Mar 04 2008

Keywords

Examples

			From _Gus Wiseman_, Nov 14 2018: (Start)
The a(4) = 20 matrices:
  [11]
  [11]
.
  [110][101][100][100][011][010][010][001][001]
  [100][010][011][001][100][110][101][010][001]
  [001][100][010][011][100][001][010][101][110]
.
  [1000][1000][1000][1000][0100][0100][0010][0010][0001][0001]
  [0100][0100][0010][0001][1000][1000][0100][0001][0100][0010]
  [0010][0001][0100][0010][0010][0001][1000][1000][0010][0100]
  [0001][0010][0001][0100][0001][0010][0001][0100][1000][1000]
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[(1+x)^k*(1+x^2)^(k*(k-1)/2)/2^(k+1),{x,0,n}],{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Jul 02 2014 *)
    Join[{1},  Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], Sort[Reverse/@#]==#]&]], {n, 5}]] (* Gus Wiseman, Nov 14 2018 *)

Formula

G.f.: Sum_{n>=0} (1+x)^n*(1+x^2)^binomial(n,2)/2^(n+1).
G.f.: Sum_{n>=0} (Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*(1+x)^k*(1+x^2)^binomial(k,2)).

A300060 Number of domino tilings of the diagram of the integer partition with Heinz number n.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 3, 0, 3, 1, 1, 0, 0, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 5, 0, 0, 1, 1, 0, 3, 0, 2, 0, 0, 0, 1, 1, 3, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 4, 1, 0, 0, 1, 0, 5, 1, 0, 2, 3, 0, 2, 1, 1, 1, 5, 0, 0, 1, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od;
            `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
          fi
        end:
    g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
            `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    a:= n-> g(sort(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
    seq(a(n), n=1..120);  # Alois P. Heinz, May 22 2018
  • Mathematica
    h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[Map[Function[x, x-1], l[[Range @ f[[1]]]]], ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0, k-- ]; If[Length[f] > 0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k-1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
    g[l_] := If[Sum[If[OddQ @ l[[i]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, l[[1]]], ReplacePart[l, 1 -> Nothing]]], 0];
    a[n_] := g[Reverse @ Sort[ Flatten[ Map[ Function[i, Table[PrimePi[i[[1]]], i[[2]]]], FactorInteger[n]]]]];
    Array[a, 120] (* Jean-François Alcover, May 28 2018, after Alois P. Heinz *)

A300056 Number of normal standard domino tableaux whose shape is the integer partition with Heinz number n.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 3, 1, 0, 0, 3, 0, 3, 2, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 4, 2, 0, 0, 1, 0, 0, 1, 0, 1, 6, 0, 0, 3, 1, 0, 4, 0, 5, 0, 0, 0, 1, 1, 8, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 6, 4, 0, 0, 1, 0, 6, 1, 0, 6, 5, 0, 6, 3, 1, 2, 10, 0, 0, 1, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. A standard domino tableau is a generalized Young tableau in which all rows and columns are weakly increasing and all regions are dominos. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(75) = 6 tableaux:
1 2 4   1 2 3   1 2 2   1 1 4   1 1 4   1 1 3
1 2 4   1 2 3   1 3 3   2 3 4   2 2 4   2 2 3
3 3     4 4     4 4     2 3     3 3     4 4
		

Crossrefs

A300120 Number of skew partitions whose quotient diagram is connected and whose numerator has weight n.

Original entry on oeis.org

2, 6, 12, 26, 44, 86, 136, 239, 376, 613, 930, 1485, 2194, 3355, 4948, 7372, 10656, 15660, 22359, 32308
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns.

Examples

			The a(3) = 12 skew partitions:
(3)/()   (3)/(1)   (3)/(2)    (3)/(3)
(21)/()  (21)/(11) (21)/(2)   (21)/(21)
(111)/() (111)/(1) (111)/(11) (111)/(111)
		

Crossrefs

Programs

  • Mathematica
    undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]
    				

A300122 Number of normal generalized Young tableaux of size n with all rows and columns weakly increasing and all regions connected skew partitions.

Original entry on oeis.org

1, 4, 13, 51, 183, 771, 3087, 13601, 59933, 278797, 1311719, 6453606, 32179898, 166075956, 871713213, 4704669005, 25831172649, 145260890323
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers.

Examples

			The a(3) = 13 tableaux:
1 1 1   1 1 2   1 2 2   1 2 3
.
1 1   1 1   1 2   1 2   1 3
1     2     1     3     2
.
1   1   1   1
1   1   2   2
1   2   2   3
		

Crossrefs

Programs

  • Mathematica
    undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]
    				
Previous Showing 11-20 of 44 results. Next