A340660
A000079 is the first row. For the second row, subtract A001045. For the third row, subtract A001045 from the second one, etc. The resulting array is read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 1, 4, 1, 0, 3, 8, 1, -1, 2, 5, 16, 1, -2, 1, 2, 11, 32, 1, -3, 0, -1, 6, 21, 64, 1, -4, -1, -4, 1, 10, 43, 128, 1, -5, -2, -7, -4, -1, 22, 85, 256, 1, -6, -3, -10, -9, -12, 1, 42, 171, 512, 1, -7, -4, -13, -14, -23, -20, -1, 86, 341, 1024
Offset: 0
Square array:
1, 2, 4, 8, 16, 32, 64, 128, ... = A000079(n)
1, 1, 3, 5, 11, 21, 43, 85, ... = A001045(n+1)
1, 0, 2, 2, 6, 10, 22, 42, ... = A078008(n)
1, -1, 1, -1, 1, -1, 1, -1, ... = A033999(n)
1, -2, 0, -4, -4, -12, -20, -44, ... = -A084247(n)
1, -3, -1, -7, -9, -23, -41, -87, ... = (-1)^n*A140966(n+1)
1, -4, -2, -10, -14, -34, -62, -130, ... = -A135440(n)
1, -5, -3, -13, -19, -45, -83, -173, ... = -A155980(n+3) or -A171382(n+1)
...
-
A:= (n, k)-> (<<0|1>, <2|1>>^k. <<1, 2-n>>)[1$2]:
seq(seq(A(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Jan 21 2021
-
A340660[m_, n_] := LinearRecurrence[{1, 2}, {1, m}, {n}]; Table[Reverse[Table[A340660[m, n + m - 2] // First, {m, 2, -n + 3, -1}]], {n, 1, 11}] // Flatten (* Robert P. P. McKone, Jan 28 2021 *)
-
T(n, k) = 2^k - n*(2^k - (-1)^k)/3;
matrix(10,10,n,k,T(n-1,k-1)) \\ Michel Marcus, Jan 19 2021
A366987
Triangle read by rows: T(n, k) = -(2^(n - k)*(-1)^n + 2^k + (-1)^k)/3.
Original entry on oeis.org
-1, 0, 0, -2, -1, -2, 2, 1, -1, -2, -6, -3, -3, -3, -6, 10, 5, 1, -1, -5, -10, -22, -11, -7, -5, -7, -11, -22, 42, 21, 9, 3, -3, -9, -21, -42, -86, -43, -23, -13, -11, -13, -23, -43, -86, 170, 85, 41, 19, 5, -5, -19, -41, -85, -170, -342, -171, -87, -45, -27, -21, -27, -45, -87, -171, -342
Offset: 0
Triangle T(n, k) starts:
-1
0 0
-2 -1 -2
2 1 -1 -2
-6 -3 -3 -3 -6
10 5 1 -1 -5 -10
-22 -11 -7 -5 -7 -11 -22
42 21 9 3 -3 -9 -21 -42
...
Note the symmetrical distribution of the absolute values of the terms in each row.
First column: -(-1)^n *
A078008(n).
Second column: (-1)^n *
A001045(n).
Fourth column: (-1)^n *
A155980(n+2).
-
T := (n, k) -> -(2^(n-k)*(-1)^n + 2^k + (-1)^k)/3:
seq(seq(T(n, k), k = 0..n), n = 0..10); # Peter Luschny, Nov 02 2023
-
A366987row[n_]:=Table[-(2^(n-k)(-1)^n+2^k+(-1)^k)/3,{k,0,n}];Array[A366987row,15,0] (* Paolo Xausa, Nov 07 2023 *)
-
T(n, k) = (-2^(k+1) + 2*(-1)^(k+1) + (-1)^(n+1)*2^(1+n-k))/6 \\ Thomas Scheuerle, Nov 01 2023
A352692
a(n) + a(n+1) = 2^n for n >= 0 with a(0) = 4.
Original entry on oeis.org
4, -3, 5, -1, 9, 7, 25, 39, 89, 167, 345, 679, 1369, 2727, 5465, 10919, 21849, 43687, 87385, 174759, 349529, 699047, 1398105, 2796199, 5592409, 11184807, 22369625, 44739239, 89478489, 178956967, 357913945, 715827879, 1431655769, 2863311527, 5726623065, 11453246119, 22906492249
Offset: 0
-
a := proc(n) option remember; ifelse(n = 0, 4, 2^(n-1) - a(n-1)) end: # Peter Luschny, Mar 29 2022
A352691 := proc(n)
(11*(-1)^n + 2^n)/3
end proc: # R. J. Mathar, Apr 26 2022
-
LinearRecurrence[{1, 2}, {4, -3}, 40] (* Amiram Eldar, Mar 29 2022 *)
-
a(n) = (11*(-1)^n + 2^n)/3; \\ Thomas Scheuerle, Mar 29 2022
Warning: The DATA is correct, but there may be errors in the COMMENTS, which should be rechecked. - Editors of OEIS, Apr 26 2022
Comments