cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 78 results. Next

A330663 Number of non-isomorphic balanced reduced multisystems of weight n and maximum depth.

Original entry on oeis.org

1, 1, 2, 4, 20, 140, 1411
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The weight of an atom is 1, while the weight of a multiset is the sum of weights of its elements.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(4) = 20 multisystems:
  {1,1}  {{1},{1,1}}  {{{1}},{{1},{1,1}}}
  {1,2}  {{1},{1,2}}  {{{1,1}},{{1},{1}}}
         {{1},{2,3}}  {{{1}},{{1},{1,2}}}
         {{2},{1,1}}  {{{1,1}},{{1},{2}}}
                      {{{1}},{{1},{2,2}}}
                      {{{1,1}},{{2},{2}}}
                      {{{1}},{{1},{2,3}}}
                      {{{1,1}},{{2},{3}}}
                      {{{1}},{{2},{1,1}}}
                      {{{1,2}},{{1},{1}}}
                      {{{1}},{{2},{1,2}}}
                      {{{1,2}},{{1},{2}}}
                      {{{1}},{{2},{1,3}}}
                      {{{1,2}},{{1},{3}}}
                      {{{1}},{{2},{3,4}}}
                      {{{1,2}},{{3},{4}}}
                      {{{2}},{{1},{1,1}}}
                      {{{2}},{{1},{1,3}}}
                      {{{2}},{{3},{1,1}}}
                      {{{2,3}},{{1},{1}}}
		

Crossrefs

The non-maximal version is A330474.
Labeled versions are A330675 (strongly normal) and A330676 (normal).
The case where the leaves are sets (as opposed to multisets) is A330677.
The case with all atoms distinct is A000111.
The case with all atoms equal is (also) A000111.

A331875 Number of enriched identity p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 3, 6, 14, 32, 79, 198, 522, 1368, 3716, 9992, 27612, 75692, 212045, 589478, 1668630, 4690792, 13387332, 37980664, 109098556, 311717768, 900846484, 2589449032, 7515759012, 21720369476, 63305262126, 183726039404, 537364221200, 1565570459800, 4592892152163
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

An enriched identity p-tree of weight n is either the number n itself or a finite sequence of distinct enriched identity p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(1) = 1 through a(6) = 14 enriched p-trees:
  1  2  3     4        5           6
        (21)  (31)     (32)        (42)
              ((21)1)  (41)        (51)
                       ((21)2)     (321)
                       ((31)1)     ((21)3)
                       (((21)1)1)  ((31)2)
                                   ((32)1)
                                   (3(21))
                                   ((41)1)
                                   ((21)21)
                                   (((21)1)2)
                                   (((21)2)1)
                                   (((31)1)1)
                                   ((((21)1)1)1)
		

Crossrefs

The orderless version is A300660.
The locally disjoint case is A331684.
Identity trees are A004111.
P-trees are A196545.
Enriched p-trees are A289501.

Programs

  • Mathematica
    eptrid[n_]:=Prepend[Select[Join@@Table[Tuples[eptrid/@p],{p,Rest[IntegerPartitions[n]]}],UnsameQ@@#&],n];
    Table[Length[eptrid[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, sum(j=0, n\k, j!*binomial(v[k],j)*x^(k*j)) + O(x*x^n)), n)); v} \\ Andrew Howroyd, Feb 09 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 09 2020

A316654 Number of series-reduced rooted identity trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.

Original entry on oeis.org

1, 1, 5, 39, 387, 4960, 74088, 1312716, 26239484, 595023510, 14908285892, 412903136867, 12448252189622, 407804188400373, 14380454869464352, 544428684832123828, 21991444994187529639, 945234507638271696504, 43042162953650721470752, 2071216980365429970912347
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(3) = 5 trees are (1(12)), (1(23)), (2(13)), (3(12)), (123).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],UnsameQ@@#&]];
    Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,5}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n]=polcoef(sWeighT(x*Ser(v[1..n])), n)); x*Ser(v)}
    StronglyNormalLabelingsSeq(cycleIndexSeries(12)) \\ Andrew Howroyd, Jan 22 2021

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 22 2021

A318849 Number of orderless tree-partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 11, 8, 27, 20, 30, 38, 96, 74, 114, 58, 308, 234, 1052, 176, 509, 278, 3648, 374, 600, 1076, 1760, 814, 13003, 1306, 47006, 612, 2226, 4200, 3094, 2914, 172605, 16588, 9814, 2168, 640662, 6998, 2402388, 3698, 11496, 65936, 9082538, 4914, 17996
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a multiset of tree-partitions, one of each part of a multiset partition of m with at least two parts.

Examples

			The a(7) = 11 orderless tree-partitions of {1,1,1,1}:
  (1111)
  ((1)(111))
  ((11)(11))
  ((1)(1)(11))
  ((1)((1)(11)))
  ((11)((1)(1)))
  ((1)(1)(1)(1))
  ((1)((1)(1)(1)))
  ((1)(1)((1)(1)))
  ((1)((1)((1)(1))))
  (((1)(1))((1)(1)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    olmsptrees[m_]:=Prepend[Union@@Table[Sort/@Tuples[olmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Length[olmsptrees[nrmptn[n]]],{n,15}]

Formula

a(n) = A292504(A181821(n)).
a(prime(n)) = A141268(n).
a(2^n) = A005804(n).

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A320169 Number of balanced enriched p-trees of weight n.

Original entry on oeis.org

1, 2, 3, 6, 9, 20, 31, 70, 114, 243, 415, 961, 1603, 3564, 6559, 14913, 26630, 60037, 110160, 248859, 458445, 1001190, 1882350, 4220358, 7765303, 16822107, 32307240, 70081784, 133716083, 291788153, 561823990, 1230204229, 2396185727, 5176454708, 10220127290
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

An enriched p-tree of weight n is either the number n itself or a finite sequence of enriched p-trees whose weights are weakly decreasing and sum to n.
A tree is balanced if all leaves have the same height.

Examples

			The a(1) = 1 through a(6) = 20 balanced enriched p-trees:
  1  2     3      4           5            6
     (11)  (21)   (22)        (32)         (33)
           (111)  (31)        (41)         (42)
                  (211)       (221)        (51)
                  (1111)      (311)        (222)
                  ((11)(11))  (2111)       (321)
                              (11111)      (411)
                              ((21)(11))   (2211)
                              ((111)(11))  (3111)
                                           (21111)
                                           (111111)
                                           ((21)(21))
                                           ((22)(11))
                                           ((31)(11))
                                           ((111)(21))
                                           ((21)(111))
                                           ((211)(11))
                                           ((111)(111))
                                           ((1111)(11))
                                           ((11)(11)(11))
		

Crossrefs

Programs

  • Mathematica
    eptrs[n_]:=Prepend[Join@@Table[Tuples[eptrs/@p],{p,Rest[IntegerPartitions[n]]}],n];
    Table[Length[Select[eptrs[n],SameQ@@Length/@Position[#,_Integer]&]],{n,12}]
  • PARI
    seq(n)={my(p=x/(1-x) + O(x*x^n), q=0); while(p, q+=p; p = 1/prod(k=1, n, 1 - polcoef(p,k)*x^k + O(x*x^n)) - 1 - p); Vec(q)} \\ Andrew Howroyd, Oct 26 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Oct 26 2018

A330624 Number of non-isomorphic series-reduced rooted trees whose leaves are sets (not necessarily disjoint) with a total of n elements.

Original entry on oeis.org

1, 1, 3, 10, 61, 410, 3630
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2019

Keywords

Comments

A rooted tree is series-reduced if it has no unary branchings, so every non-leaf node covers at least two other nodes.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 10 trees:
  {1}  {1,2}      {1,2,3}
       {{1},{1}}  {{1},{1,2}}
       {{1},{2}}  {{1},{2,3}}
                  {{1},{1},{1}}
                  {{1},{1},{2}}
                  {{1},{2},{3}}
                  {{1},{{1},{1}}}
                  {{1},{{1},{2}}}
                  {{1},{{2},{3}}}
                  {{2},{{1},{1}}}
		

Crossrefs

The version with multisets as leaves is A330465.
The singleton-reduced case is A330626.
A labeled version is A330625 (strongly normal).
The case with all atoms distinct is A141268.
The case where all leaves are singletons is A330470.

A331678 Number of lone-child-avoiding locally disjoint rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 3, 6, 18, 44, 149, 450, 1573, 5352, 19283, 69483, 257206
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings. Locally disjoint means no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex.

Examples

			The a(1) = 1 through a(4) = 18 trees:
  (1)  (2)       (3)            (4)
       (11)      (12)           (13)
       ((1)(1))  (111)          (22)
                 ((1)(2))       (112)
                 ((1)(1)(1))    (1111)
                 ((1)((1)(1)))  ((1)(3))
                                ((2)(2))
                                ((2)(11))
                                ((11)(11))
                                ((1)(1)(2))
                                ((1)((1)(2)))
                                ((2)((1)(1)))
                                ((1)(1)(1)(1))
                                ((11)((1)(1)))
                                ((1)((1)(1)(1)))
                                ((1)(1)((1)(1)))
                                (((1)(1))((1)(1)))
                                ((1)((1)((1)(1))))
		

Crossrefs

The case where all leaves are singletons is A316696.
The case where all leaves are (1) is A316697.
The non-locally disjoint version is A319312.
The case with all atoms equal to 1 is A331679.
The identity tree case is A331686.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],disjointQ],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]

A331687 Number of locally disjoint enriched p-trees of weight n.

Original entry on oeis.org

1, 2, 4, 12, 29, 93, 249, 803, 2337, 7480, 23130, 77372, 247598, 834507, 2762222
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

A locally disjoint enriched p-tree of weight n is either the number n itself or a finite sequence of non-overlapping locally disjoint enriched p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(1) = 1 through a(4) = 12 enriched p-trees:
  1  2     3        4
     (11)  (21)     (22)
           (111)    (31)
           ((11)1)  (211)
                    (1111)
                    ((11)2)
                    ((21)1)
                    (2(11))
                    ((11)11)
                    ((111)1)
                    (((11)1)1)
                    ((11)(11))
		

Crossrefs

The orderless version is A316696.
The identity case is A331684.
P-trees are A196545.
Enriched p-trees are A289501.
Locally disjoint identity trees are A316471.
Enriched identity p-trees are A331875.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    ldep[n_]:=Prepend[Select[Join@@Table[Tuples[ldep/@p],{p,Rest[IntegerPartitions[n]]}],disjointQ[DeleteCases[#,_Integer]]&],n];
    Table[Length[ldep[n]],{n,10}]

A320155 Number of series-reduced balanced rooted trees with n labeled leaves.

Original entry on oeis.org

1, 1, 1, 4, 11, 41, 162, 1030, 7205, 55522, 442443, 3810852, 35272030, 351697516, 3735838550, 42719792640, 529195988635, 7128835815387, 103651381499810, 1610812109555323, 26489497655582729, 457497408108551450, 8248899117402701046, 154624472715479106919
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.

Examples

			The a(1) = 1 through a(5) = 11 rooted trees:
  1  (12)  (123)    (1234)      (12345)
                  ((12)(34))  ((12)(345))
                  ((13)(24))  ((13)(245))
                  ((14)(23))  ((14)(235))
                              ((15)(234))
                              ((23)(145))
                              ((24)(135))
                              ((25)(134))
                              ((34)(125))
                              ((35)(124))
                              ((45)(123))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    phy2[labs_]:=If[Length[labs]==1,labs,Union@@Table[Sort/@Tuples[phy2/@ptn],{ptn,Select[sps[Sort[labs]],Length[#1]>1&]}]];
    Table[Length[Select[phy2[Range[n]],SameQ@@Length/@Position[#,_Integer]&]],{n,7}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n,k)={my(u=vector(n), v=vector(n)); u[1]=k; while(u, v+=u; u=EulerT(u)-u); v}
    seq(n)={my(M=Mat(vectorv(n,k,b(n,k)))); vector(n, k, sum(i=1, k, binomial(k,i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018

Formula

E.g.f. A(x) satisfies A(x) = x + A(exp(x)-x-1). - Ira M. Gessel, Nov 17 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Oct 26 2018

A320173 Number of inequivalent colorings of series-reduced balanced rooted trees with n leaves.

Original entry on oeis.org

1, 2, 3, 12, 23, 84, 204, 830, 2940, 13397, 58794, 283132, 1377302, 7087164, 37654377, 209943842, 1226495407, 7579549767, 49541194089, 341964495985, 2476907459261, 18703210872343, 146284738788714, 1179199861398539, 9760466433602510, 82758834102114911, 717807201648148643
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.

Examples

			Inequivalent representatives of the a(1) = 1 through a(5) = 23 colorings:
  1  (11)  (111)    (1111)      (11111)
     (12)  (112)    (1112)      (11112)
           (123)    (1122)      (11122)
                    (1123)      (11123)
                    (1234)      (11223)
                  ((11)(11))    (11234)
                  ((11)(12))    (12345)
                  ((11)(22))  ((11)(111))
                  ((11)(23))  ((11)(112))
                  ((12)(12))  ((11)(122))
                  ((12)(13))  ((11)(123))
                  ((12)(34))  ((11)(223))
                              ((11)(234))
                              ((12)(111))
                              ((12)(112))
                              ((12)(113))
                              ((12)(123))
                              ((12)(134))
                              ((12)(345))
                              ((13)(122))
                              ((22)(111))
                              ((23)(111))
                              ((23)(114))
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(p=x*sv(1) + O(x*x^n), q=0); while(p, q+=p; p=sEulerT(p)-1-p); q}
    InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 11 2020
Previous Showing 31-40 of 78 results. Next