cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 96 results. Next

A182732 The limit of row A182730(n,.) as n-> infinity.

Original entry on oeis.org

2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 6, 5, 9, 4, 8, 7, 6, 12, 5, 4, 8, 7, 6, 11, 6, 5, 10, 9, 8, 7, 14, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 4, 8, 7, 6, 12, 6, 11, 10, 9, 8, 16, 3, 6, 5, 9, 4, 8, 7, 6, 12, 7, 6, 11, 5, 10, 9, 8, 15, 6, 5, 10, 9, 8, 7, 14, 8, 7, 13, 6, 12, 11, 10, 9, 18
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2010

Keywords

Comments

Largest part of the n-th partition of the table 2.0 mentioned in A135010. For the table 2.0 see A182982.

Crossrefs

One together with where records occur give A182746.

A182733 The limit of row A182731(n,.) as n-> infinity.

Original entry on oeis.org

3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 3, 6, 5, 9, 4, 8, 7, 6, 12, 7, 6, 11, 5, 10, 9, 8, 15, 5, 4, 8, 7, 6, 11, 6, 5, 10, 9, 8, 7, 14, 5, 9, 8, 7, 13, 7, 6, 12, 11, 10, 9, 17, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 4, 8, 7, 6, 12, 6, 11, 10, 9, 8, 16, 7, 6, 11, 5, 10, 9, 8, 15, 9, 8, 7, 14, 7, 13, 12, 11, 10, 19
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2010

Keywords

Comments

Largest part of the n-th partition of the table 2.1 mentioned in A135010. For the table 2.1 see A182983.

Crossrefs

Zero together with where records occur give A182747.

A182181 Total number of parts in the section model of partitions of A135010 with n regions.

Original entry on oeis.org

1, 3, 6, 7, 12, 13, 20, 21, 23, 24, 35, 36, 38, 39, 54, 55, 57, 58, 62, 63, 64, 86, 87, 89, 90, 94, 95, 97, 98, 128, 129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192, 193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Examples

			The first four regions of the section model of partitions are [1],[2, 1],[3, 1, 1],[2]. We can see that there are seven parts so a(4) = 7.
Written as a triangle begins:
    1;
    3;
    6;
    7,  12;
   13,  20;
   21,  23,  24,  35;
   36,  38,  39,  54;
   55,  57,  58,  62,  63,  64,  86;
   87,  89,  90,  94,  95,  97,  98, 128;
  129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192;
  193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275;
  ...
From _Omar E. Pol_, Oct 20 2014: (Start)
Illustration of initial terms:
.                                                _ _ _ _ _
.                                      _ _ _    |_ _ _    |
.                            _ _ _ _  |_ _ _|_  |_ _ _|_  |
.                    _ _    |_ _    | |_ _    | |_ _    | |
.            _ _ _  |_ _|_  |_ _|_  | |_ _|_  | |_ _|_  | |
.      _ _  |_ _  | |_ _  | |_ _  | | |_ _  | | |_ _  | | |
.  _  |_  | |_  | | |_  | | |_  | | | |_  | | | |_  | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
.  1    3      6       7        12        13         20
.
.                                          _ _ _ _ _ _
.                             _ _ _       |_ _ _      |
.                _ _ _ _     |_ _ _|_     |_ _ _|_    |
.   _ _         |_ _    |    |_ _    |    |_ _    |   |
.  |_ _|_ _ _   |_ _|_ _|_   |_ _|_ _|_   |_ _|_ _|_  |
.  |_ _ _    |  |_ _ _    |  |_ _ _    |  |_ _ _    | |
.  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  | |
.  |_ _    | |  |_ _    | |  |_ _    | |  |_ _    | | |
.  |_ _|_  | |  |_ _|_  | |  |_ _|_  | |  |_ _|_  | | |
.  |_ _  | | |  |_ _  | | |  |_ _  | | |  |_ _  | | | |
.  |_  | | | |  |_  | | | |  |_  | | | |  |_  | | | | |
.  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|_|
.
.       21           23           24            35
(End)
		

Crossrefs

Partial sums of A194446.
Row j has length A187219(j).
Right border gives A006128.
For the definition of "region" see A206437.

Programs

  • Mathematica
    lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
    reg = {}; l = {};
    For[j = 1, j <= 56, j++,
      mx = Max@lex[j][[j]]; AppendTo[l, mx];
      For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
      AppendTo[reg, j - i];
      ];
    Accumulate@reg  (* Robert Price, Apr 22 2020, revised Jul 25 2020 *)

Formula

a(A000041(n)) = A006128(n), n >= 1.
a(A000041(n)) = A182727(A000041(n)). - Omar E. Pol, May 24 2012

A194805 Number of parts that are visible in one of the three views of the section model of partitions version "tree" with n sections.

Original entry on oeis.org

0, 1, 2, 4, 7, 11, 17, 25, 36, 51, 71, 97, 132, 177, 235, 310, 406, 527, 681, 874, 1116, 1418, 1793, 2256, 2829, 3532, 4393, 5445, 6727, 8282, 10168, 12445, 15190, 18491, 22452, 27192, 32859, 39613, 47651, 57199, 68522, 81920, 97756, 116434, 138435
Offset: 0

Views

Author

Omar E. Pol, Jan 27 2012

Keywords

Comments

The mentioned view of the section model looks like a tree (see example). Note that every column contains the same parts. For more information about the section model of partitions see A135010 and A194803.
Number of partitions of 2n-1 such that n-1 or n is a part, for n >=1. - Clark Kimberling, Mar 01 2014

Examples

			Illustration of one of the three views with seven sections:
.
.                   1
.                 2 1
.                   1 3
.                 2 1
.               4   1
.                   1 3
.                   1   5
.                 2 1
.               4   1
.             3     1
.           6       1
.                     3
.                       5
.                         4
.                           7
.
There are 25 parts that are visible, so a(7) = 25.
Using the formula we have a(7) = p(7) + p(7-1) - 1 = 15 + 11 - 1 = 25, where p(n) is the number of partitions of n.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerPartitions[2 n - 1],  p_ /; Or[MemberQ[p, n - 1], MemberQ[p, n]]], {n, 50}]  (* Clark Kimberling, Mar 01 2014 *)
    Table[PartitionsP[n] + PartitionsP[n-1] - 1, {n, 0, 44}] (* Robert Price, May 12 2020 *)

Formula

a(n) = A084376(n) - 1.
a(n) = A000041(n) + A000041(n-1) - 1, if n >= 1.
a(n) = A000041(n) + A000065(n-1), if n >= 1.

A207380 Total area of the shadows of the three views of a three-dimensional version of the shell model of partitions with n shells.

Original entry on oeis.org

0, 3, 10, 21, 42, 70, 122, 187, 298, 443, 667, 957, 1401, 1960, 2775, 3828, 5295, 7167, 9745, 12998, 17380, 22915, 30196, 39347, 51274, 66126, 85209, 108942, 139055, 176273, 223148, 280733, 352623, 440646, 549597, 682411, 845852, 1044084, 1286512, 1579582
Offset: 0

Views

Author

Omar E. Pol, Feb 17 2012

Keywords

Comments

In this model each part of a partition can be represented by a cuboid of size 1 x 1 x L, where L is the size of the part. One of the views is a rectangle formed by ones whose area is n*A000041(n) = A066186(n). Each element of the first view is equal to the volume of a horizontal column parallel to the axis x. The second view is the n-th slice illustrated in A026792 which has A000041(n) levels and its area is A006128(n) equals the total number of parts of all partitions of n and equals the sum of largest parts of all partitions of n. Each zone contains a partition of n. Each element of the second view is equal to the volume of a horizontal column parallel to the axis y. The third view is a triangle because it is also the n-th slice of the tetrahedron of A209655. The area of triangle is A000217(n). Each element of the third view is equal to the volume of a vertical column parallel to the axis z. The sum of elements of each view is A066186(n) equals the area of the first view. For more information about the shell model of partitions see A135010 and A182703.

Examples

			For n = 5 the three views of the three-dimensional shell model of partitions with 5 shells look like this:
.
.   A066186(5) = 35     A006128(5) = 20
.
.         1 1 1 1 1     5
.         1 1 1 1 1     3 2
.         1 1 1 1 1     4 1
.         1 1 1 1 1     2 2 1
.         1 1 1 1 1     3 1 1
.         1 1 1 1 1     2 1 1 1
.         1 1 1 1 1     1 1 1 1 1
.
.
.         7 6 4 2 1
.           1 2 3 2
.             1 1 2
.               1 1
.                 1
.
.   A000217(5) = 15
.
The areas of the shadows of the three views are A066186(5) = 35, A006128(5) = 20 and A000217(5) = 15, therefore the total area of the three shadows is 35+20+15 = 70, so a(5) = 70.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, n]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+g[1]]
          fi
        end:
    a:= n-> n*b(n, n)[1] +b(n, n)[2] +n*(n+1)/2:
    seq (a(n), n=0..50);  # Alois P. Heinz, Mar 22 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, If [n == 0 || i == 1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; Join[f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]] ]]]; a[n_] := n*b[n, n][[1]] + b[n, n][[2]] + n*(n+1)/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 18 2015, after Alois P. Heinz *)

Formula

a(n) = n * A000041(n) + A000217(n) + A006128(n) = A066186(n) + A000217(n) + A006128(n).

Extensions

More terms from Alois P. Heinz, Mar 22 2012

A182244 Sum of all parts of the shell model of partitions of A135010 with n regions.

Original entry on oeis.org

1, 4, 9, 11, 20, 23, 35, 37, 43, 46, 66, 69, 76, 80, 105, 107, 113, 116, 129, 134, 138, 176, 179, 186, 190, 204, 207, 216, 221, 270, 272, 278, 281, 294, 299, 303, 326, 330, 340, 346, 351, 420, 423, 430, 434, 448, 451, 460, 465, 492, 497, 501, 516, 523, 529, 616
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Examples

			The first four regions of the shell model of partitions are [1],[2, 1],[3, 1, 1],[2], so a(4) = (1)+(2+1)+(3+1+1)+(2) = 11.
Written as a triangle begins:
1;
4;
9;
11,  20;
23,  35;
37,  43, 46, 66;
69,  76, 80,105;
107,113,116,129,134,138,176;
179,186,190,204,207,216,221,270;
272,278,281,294,299,303,326,330,340,346,351,420;
423,430,434,448,451,460,465,492,497,501,516,523,529,616;
...
From _Omar E. Pol_, Aug 08 2013: (Start)
Illustration of initial terms:
.                                                _ _ _ _ _
.                                      _ _ _    |_ _ _    |
.                            _ _ _ _  |_ _ _|_  |_ _ _|_  |
.                    _ _    |_ _    | |_ _    | |_ _    | |
.            _ _ _  |_ _|_  |_ _|_  | |_ _|_  | |_ _|_  | |
.      _ _  |_ _  | |_ _  | |_ _  | | |_ _  | | |_ _  | | |
.  _  |_  | |_  | | |_  | | |_  | | | |_  | | | |_  | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
.  1    4      9       11       20        23        35
.
.                                          _ _ _ _ _ _
.                             _ _ _       |_ _ _      |
.                _ _ _ _     |_ _ _|_     |_ _ _|_    |
.   _ _         |_ _    |    |_ _    |    |_ _    |   |
.  |_ _|_ _ _   |_ _|_ _|_   |_ _|_ _|_   |_ _|_ _|_  |
.  |_ _ _    |  |_ _ _    |  |_ _ _    |  |_ _ _    | |
.  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  | |
.  |_ _    | |  |_ _    | |  |_ _    | |  |_ _    | | |
.  |_ _|_  | |  |_ _|_  | |  |_ _|_  | |  |_ _|_  | | |
.  |_ _  | | |  |_ _  | | |  |_ _  | | |  |_ _  | | | |
.  |_  | | | |  |_  | | | |  |_  | | | |  |_  | | | | |
.  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|_|
.
.       37           43           46           66
(End)
		

Crossrefs

Partial sums of A186412. Row j has length A187219(j). Right border gives A066186.

Programs

  • Mathematica
    lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
    A186412 = {}; l = {};
    For[j = 1, j <= 56, j++,
      mx = Max@lex[j][[j]]; AppendTo[l, mx];
      For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
      AppendTo[A186412, Total@Take[Reverse[First /@ lex[mx]], j - i]];
      ];
    Accumulate@A186412  (* Robert Price, Jul 25 2020 *)

Formula

a(A000041(k)) = A066186(k), k >= 1.

A182715 Triangle read by rows in which row n lists in nonincreasing order the smallest part of every partition of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Omar E. Pol, Dec 01 2010

Keywords

Comments

Triangle read by rows in which row n lists the smallest parts of all partitions of n in the order produced by the shell model of partitions of A138121.
Also, row n lists the "filler parts" of all partition of n. For more information see A182699.
Row n has length A000041(n). Row sums give A046746. Column 1 gives A001477. The last A000041(n-1) terms of row n are ones, n >= 1.

Examples

			For row 10, see the illustration of the link.
Triangle begins:
  0,
  1,
  2,1,
  3,1,1,
  4,2,1,1,1,
  5,2,1,1,1,1,1,
  6,3,2,2,1,1,1,1,1,1,1,
  7,3,2,2,1,1,1,1,1,1,1,1,1,1,1,
  8,4,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
  9,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
  ...
		

Crossrefs

Mirror of triangle A196931.

Extensions

Name simplified and more terms from Omar E. Pol, Oct 21 2011

A194549 Triangle read by rows: T(n,k) = Dyson's rank of the k-th partition of n that does not contain 1 as a part, with partitions in lexicographic order.

Original entry on oeis.org

1, 1, 2, 0, 3, 1, 4, -1, 2, 1, 5, 0, 3, 2, 6, -2, 1, 0, 4, 3, 2, 7, -1, 2, 1, 5, 0, 4, 3, 8, -3, 0, -1, 3, 2, 1, 6, 1, 5, 4, 3, 9, -2, 1, 0, 4, -1, 3, 2, 7, 2, 1, 6, 5, 4, 10, -4, -1, -2, 2, 1, 0, 5, 0, 4, 3, 2, 8, -1, 3, 2, 7, 1, 6, 5, 4, 11, -3, 0, -1, 3, -2
Offset: 1

Views

Author

Omar E. Pol, Dec 11 2011

Keywords

Examples

			Written as a triangle:
  1;
  1;
  2;
  0,3;
  1,4;
  -1,2,1,5;
  0,3,2,6;
  -2,1,0,4,3,2,7;
  -1,2,1,5,0,4,3,8;
  -3,0,-1,3,2,1,6,1,5,4,3,9;
  -2,1,0,4,-1,3,2,7,2,1,6,5,4,10;
  -4,-1,-2,2,1,0,5,0,4,3,2,8,-1,3,2,7,1,6,5,4,11;
		

Crossrefs

The sum of row n is A000041(n-1). Row n has length A187219(n).

Programs

  • Maple
    T:= proc(n) local b, l;
          b:= proc(n, i, t)
                if n=0 then l:=l, i-t
              elif i>n then
              else b(n-i, i, t+1); b(n, i+1, t)
                fi
              end;
          if n<2 then 1 else l:= NULL; b(n, 2, 0); l fi
        end:
    seq(T(n), n=1..13); # Alois P. Heinz, Dec 20 2011
  • Mathematica
    T[n_] := Module[{b, l}, b[n0_, i_, t_] :=
         If[n0 == 0, l = Append[l, i-t],
         If[i>n0, , b[n0-i, i, t+1]; b[n0, i+1, t]]];
         If[n<2, {1}, l = {}; b[n, 2, 0]; l]];
    Table[T[n], {n, 1, 13}]  // Flatten (* Jean-François Alcover, Mar 05 2021, after Alois P. Heinz *)

Formula

a(n) = A141285(n) - A194548(n).

Extensions

More terms from Alois P. Heinz, Dec 20 2011

A196931 Triangle read by rows in which row n lists in nondecreasing order the smallest part of every partition of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Omar E. Pol, Oct 21 2011

Keywords

Comments

If n >= 1, row n lists the smallest parts of every partition of n in the order produced by the shell model of partitions of A135010, hence row n lists the parts of the last section of the set of partitions of n, except the emergent parts (See A182699).
Row n has length A000041(n). Row sums give A046746. Right border of triangle gives A001477. Row n starts with A000041(n-1) ones, n >= 1.

Examples

			Written as a triangle:
  0,
  1,
  1,2,
  1,1,3,
  1,1,1,2,4,
  1,1,1,1,1,2,5,
  1,1,1,1,1,1,1,2,2,3,6
  1,1,1,1,1,1,1,1,1,1,1,2,2,3,7,
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4,8,
  ...
		

Crossrefs

A194546 Triangle read by rows: T(n,k) is the largest part of the k-th partition of n, with partitions in colexicographic order.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 2, 4, 1, 2, 3, 2, 4, 3, 5, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2011

Keywords

Comments

Row n lists the first A000041(n) terms of A141285.
The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is co-lexicographic, see example. - Joerg Arndt, Sep 13 2013

Examples

			For n = 5 the partitions of 5 in colexicographic order are:
  1+1+1+1+1
  2+1+1+1
  3+1+1
  2+2+1
  4+1
  3+2
  5
so the fifth row is the largest in each partition: 1,2,3,2,4,3,5
Triangle begins:
  1;
  1,2;
  1,2,3;
  1,2,3,2,4;
  1,2,3,2,4,3,5;
  1,2,3,2,4,3,5,2,4,3,6;
  1,2,3,2,4,3,5,2,4,3,6,3,5,4,7;
  1,2,3,2,4,3,5,2,4,3,6,3,5,4,7,2,4,3,6,5,4,8;
...
		

Crossrefs

The sum of row n is A006128(n).
Row lengths are A000041.
Let y be the n-th integer partition in colexicographic order (A211992):
- The maximum of y is a(n).
- The length of y is A193173(n).
- The minimum of y is A196931(n).
- The Heinz number of y is A334437(n).
Lexicographically ordered reversed partitions are A026791.
Reverse-colexicographically ordered partitions are A026792.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Reverse-lexicographically ordered partitions are A080577.
Lexicographically ordered partitions are A193073.

Programs

  • Mathematica
    colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
    Max/@Join@@Table[Sort[IntegerPartitions[n],colex],{n,8}] (* Gus Wiseman, May 31 2020 *)

Formula

a(n) = A061395(A334437(n)). - Gus Wiseman, May 31 2020

Extensions

Definition corrected by Omar E. Pol, Sep 12 2013
Previous Showing 31-40 of 96 results. Next