A299475
a(n) is the number of vertices in the diagram of partitions of n (see example).
Original entry on oeis.org
1, 4, 7, 10, 16, 22, 34, 46, 67, 91, 127, 169, 232, 304, 406, 529, 694, 892, 1156, 1471, 1882, 2377, 3007, 3766, 4726, 5875, 7309, 9031, 11155, 13696, 16813, 20527, 25048, 30430, 36931, 44650, 53932, 64912, 78046, 93556, 112015, 133750, 159523, 189784, 225526, 267403, 316675, 374263, 441820, 520576, 612679
Offset: 0
Construction of a modular table of partitions in which a(n) is the number of vertices of the diagram after n-th stage (n = 1..6):
--------------------------------------------------------------------------------
n ........: 1 2 3 4 5 6 (stage)
a(n)......: 4 7 10 16 22 34 (vertices)
A299474(n): 4 8 12 20 28 44 (edges)
A000041(n): 1 2 3 5 7 11 (regions)
--------------------------------------------------------------------------------
r p(n)
--------------------------------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 .... 1 ....|_| |_| | |_| | | |_| | | | |_| | | | | |_| | | | | |
2 .... 2 .........|_ _| |_ _| | |_ _| | | |_ _| | | | |_ _| | | | |
3 .... 3 ................|_ _ _| |_ _ _| | |_ _ _| | | |_ _ _| | | |
4 |_ _| | |_ _| | | |_ _| | | |
5 .... 5 .........................|_ _ _ _| |_ _ _ _| | |_ _ _ _| | |
6 |_ _ _| | |_ _ _| | |
7 .... 7 ....................................|_ _ _ _ _| |_ _ _ _ _| |
8 |_ _| | |
9 |_ _ _ _| |
10 |_ _ _| |
11 .. 11 .................................................|_ _ _ _ _ _|
.
Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram.
Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram.
The total number of parts equals the sum of largest parts.
Note that every diagram contains all previous diagrams.
An infinite diagram is a table of all partitions of all positive integers.
Cf.
A000041,
A135010,
A139582,
A141285,
A182181,
A186114,
A193870,
A194446,
A194447,
A206437,
A207779,
A220482,
A220517,
A273140,
A278355,
A278602,
A299474.
A179862
An unrestricted partition statistic: sum of A179864 over row n.
Original entry on oeis.org
1, 4, 9, 19, 33, 59, 93, 150, 226, 342, 494, 721, 1011, 1425, 1960, 2695, 3633, 4903, 6506, 8633, 11312, 14796, 19157, 24773, 31744, 40608, 51578, 65372, 82341, 103522, 129428, 161505, 200589, 248614, 306869, 378051, 463987, 568387, 693989, 845754, 1027625
Offset: 1
From _Omar E. Pol_, Jul 15 2013: (Start)
Illustration of initial terms using a Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two valleys at height 0 is also the partition number A000041(n). a(n) is the x-coordinate of the mentioned largest peak. Note that this Dyck path is infinite.
.
7..................................
. /\
5.................... / \ /\
. /\ / \ /\ /
3.......... / \ / \ / \/
2..... /\ / \ /\/ \ /
1.. /\ / \ /\/ \ / \ /\/
0 /\/ \/ \/ \/ \/
. 0,2, 6, 12, 24, 40... = A211978
. 1, 4, 9, 19, 33... = this sequence (End)
A182727
Sum of largest parts of the shell model of partitions with n regions.
Original entry on oeis.org
1, 3, 6, 8, 12, 15, 20, 22, 26, 29, 35, 38, 43, 47, 54, 56, 60, 63, 69, 74, 78, 86, 89, 94, 98, 105, 108, 114, 119, 128, 130, 134, 137, 143, 148, 152, 160, 164, 171, 177, 182, 192, 195, 200, 204, 211, 214, 220, 225, 234, 239, 243, 251, 258, 264, 275, 277, 281
Offset: 1
For n = 6 the largest parts of the first six regions of the shell model of partitions are 1, 2, 3, 2, 4, 3, so a(6) = 1+2+3+2+4+3 = 15.
Written as a triangle begins:
1;
3;
6;
8, 12;
15, 20;
22, 26, 29, 35;
38, 43, 47, 54;
56, 60, 63, 69, 74, 78, 86;
89, 94, 98,105,108,114,119,128;
130,134,137,143,148,152,160,164,171,177,182,192;
195,200,204,211,214,220,225,234,239,243,251,258,264,275;
A194803
Number of parts that are visible in one of the three views of the shell model of partitions version "Tree" with n shells.
Original entry on oeis.org
0, 1, 3, 5, 8, 11, 17, 23, 33, 46, 64, 86, 121, 161, 217, 291, 388, 507, 671, 870, 1131, 1458, 1872, 2383, 3042, 3840, 4841, 6076, 7605, 9460, 11765, 14544, 17950, 22073, 27077, 33092, 40395, 49113, 59611, 72162, 87185, 105035, 126366
Offset: 0
Illustration of one of the three views with seven shells:
1) Small version:
.
Level
1 A182732 <- 6 3 4 2 1 3 5 4 7 -> A182733
2 3 2 2 1 2 2 3
3 2 1 2
4 1
5 Table 2.0 1 Table 2.1
6 1
7 1
.
. A182742 A182982 A182743 A182983
. A182992 A182994 A182993 A182995
.
2) Large version:
.
. . . . . 1 . . . .
. . . . 1 2 . . . .
. . 1 . . 2 1 . . .
. . . 1 2 2 . . 1 .
. . . . . 2 2 1 . .
. 1 2 2 3 2 . . . .
. 2 3 2 2 1
.
The large version shows the parts labeled with the level of the part where "the level of a part" is its position in the partition. In both versions there are 23 parts that are visible, so a(7) = 23. Also using the formula we have a(7) = 7+8+8 = 23.
Cf.
A006128,
A096541,
A138135,
A135010,
A138121,
A141285,
A182732,
A182733,
A182742,
A182743,
A182982,
A182983,
A182992-
A182995,
A194804,
A194805,
A210979.
A196930
Triangle read by rows in which row n lists in nondecreasing order the smallest part of every partition of n that do not contain 1 as a part, with a(1) = 1.
Original entry on oeis.org
1, 2, 3, 2, 4, 2, 5, 2, 2, 3, 6, 2, 2, 3, 7, 2, 2, 2, 2, 3, 4, 8, 2, 2, 2, 2, 3, 3, 4, 9, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5, 10, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 12, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6, 13
Offset: 1
Written as a triangle:
1,
2,
3,
2,4,
2,5,
2,2,3,6
2,2,3,7,
2,2,2,2,3,4,8,
2,2,2,2,3,3,4,9,
2,2,2,2,2,2,2,3,3,4,5,10,
2,2,2,2,2,2,2,2,3,3,3,4,5,11,
2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,5,6,12,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,6,13,
...
Row n has length A002865(n), n >= 2. The sum of row n is A182708(n), n >= 2. The number of 2's in row n is A002865(n-2), n >= 4. Right border of triangle gives A000027.
-
p:= (f, g)-> zip((x, y)->x+y, f, g, 0):
b:= proc(n, i) option remember; local g, j, r;
if n=0 then [1] elif i<2 then [0]
else r:= b(n, i-1);
for j to n/i do g:= b(n-i*j, i-1);
r:= p(p(r, [0$i, g[1]]), subsop(1=0, g));
od; r
fi
end:
T:= proc(n) local l; l:= b(n$2);
`if`(n=1, 1, seq(i$l[i+1], i=2..nops(l)-1))
end:
seq(T(n), n=1..16); # Alois P. Heinz, May 30 2013
-
p[f_, g_] := Plus @@ PadRight[{f, g}]; b[n_, i_] := b[n, i] = Module[{ g, j, r}, Which[n == 0, {1}, i<2, {0}, True, r = b[n, i-1]; For[j = 1, j <= n/i, j++, g = b[n-i*j, i-1]; r = p[p[r, Append[Array[0&, i], g // First]], ReplacePart[g, 1 -> 0]]]; r]]; T[n_] := Module[{l}, l = b[n, n]; If[n == 1, {1}, Table[Array[i&, l[[i+1]]], {i, 2, Length[l]-1}] // Flatten]]; Table[T[n], {n, 1, 16}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
A206440
Volume of the last section of the set of partitions of n from the shell model of partitions version "Boxes".
Original entry on oeis.org
1, 5, 11, 27, 43, 93, 131, 247, 352, 584, 808, 1306, 1735, 2643, 3568, 5160, 6835, 9721, 12672, 17564, 22832, 30818, 39743, 53027, 67594, 88740, 112752, 145944, 183979, 236059, 295370, 375208, 467363, 588007, 728437, 910339, 1121009, 1391083, 1706003, 2103013
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n],
b(n, i-1)+(p-> p+[0, p[1]*i^2])(b(n-i, min(n-i, i))))
end:
a:= n-> (b(n$2)-b(n-1$2))[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Feb 23 2022
-
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, n},
b[n, i-1] + Function[p, p + {0, p[[1]]*i^2}][b[n-i, Min[n-i, i]]]];
a[n_] := (b[n, n] - b[n-1, n-1])[[2]];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 25 2022, after Alois P. Heinz *)
A210941
Triangle read by rows in which row n lists the parts > 1 of the n-th zone of the shell model of partitions, with a(1) = 1.
Original entry on oeis.org
1, 2, 3, 2, 2, 4, 3, 2, 5, 2, 2, 2, 4, 2, 3, 3, 6, 3, 2, 2, 5, 2, 4, 3, 7, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 6, 2, 5, 3, 4, 4, 8, 3, 2, 2, 2, 5, 2, 2, 4, 3, 2, 7, 2, 3, 3, 3, 6, 3, 5, 4, 9, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 2, 5, 3, 2, 4, 4, 2, 8, 2
Offset: 1
Triangle First 15 zones of the
begins shell model of partitions
--------------------------------------------------
1; 1 1 1 1 1 1 1 1 1 1 1...
2; . 2 1 1 1 1 1 1 1 1 1...
3; . . 3 1 1 1 1 1 1 1 1...
2, 2; . 2 . 2 1 1 1 1 1 1 1...
4; . . . 4 1 1 1 1 1 1 1...
3, 2; . . 3 . 2 1 1 1 1 1 1...
5; . . . . 5 1 1 1 1 1 1...
2, 2, 2; . 2 . 2 . 2 1 1 1 1 1...
4, 2; . . . 4 . 2 1 1 1 1 1...
3, 3; . . 3 . . 3 1 1 1 1 1...
6; . . . . . 6 1 1 1 1 1...
3, 2, 2; . . 3 . 2 . 2 1 1 1 1...
5, 2; . . . . 5 . 2 1 1 1 1...
4, 3; . . . 4 . . 3 1 1 1 1...
7; . . . . . . 7 1 1 1 1...
-
a210941(n)={
my(p=[],r=[1]);
if(n>1,
my(c=2);
while(#r1]));
c++));
return(r[1..n])
} \\ Joe Slater, Sep 02 2024
A299773
a(n) is the index of the partition that contains the divisors of n in the list of colexicographically ordered partitions of the sum of the divisors of n.
Original entry on oeis.org
1, 2, 3, 9, 7, 48, 15, 119, 72, 269, 56, 2740, 101, 1163, 1208, 5218, 297, 24319, 490, 42150, 6669, 14098, 1255, 792335, 5564, 42501, 30585, 432413, 4565, 4513067, 6842, 1251217, 122818, 317297, 124253, 54782479, 21637, 802541, 445414, 48590725, 44583
Offset: 1
For n = 4 the sum of the divisors of 4 is 1 + 2 + 4 = 7. Then we have that, in list of colexicographically ordered partitions of 7, the divisors of 4 are in the 9th partition, so a(4) = 9 (see below):
------------------------------------------------------
k Diagram Partitions of 7
------------------------------------------------------
_ _ _ _ _ _ _
1 |_| | | | | | | [1, 1, 1, 1, 1, 1, 1]
2 |_ _| | | | | | [2, 1, 1, 1, 1, 1]
3 |_ _ _| | | | | [3, 1, 1, 1, 1]
4 |_ _| | | | | [2, 2, 1, 1, 1]
5 |_ _ _ _| | | | [4, 1, 1, 1]
6 |_ _ _| | | | [3, 2, 1, 1]
7 |_ _ _ _ _| | | [5, 1, 1]
8 |_ _| | | | [2, 2, 2, 1]
9 |_ _ _ _| | | [4, 2, 1] <---- Divisors of 4
10 |_ _ _| | | [3, 3, 1]
11 |_ _ _ _ _ _| | [6, 1]
12 |_ _ _| | | [3, 2, 2]
13 |_ _ _ _ _| | [5, 2]
14 |_ _ _ _| | [4, 3]
15 |_ _ _ _ _ _ _| [7]
.
Cf.
A000040,
A000041,
A000203,
A008578,
A026807,
A027750,
A056538,
A135010,
A141285,
A194446,
A211992,
A272024.
-
b[n_, k_] := b[n, k] = If[k < 1 || k > n, 0, If[n == k, 1, b[n, k + 1] + b[n - k, k]]];
PartIndex[v_] := Module[{s = 1, t = 0}, For[i = Length[v], i >= 1, i--, t += v[[i]]; s += b[t, If[i == 1, 1, v[[i - 1]]]] - b[t, v[[i]]]]; s];
a[n_] := PartIndex[Divisors[n]];
a /@ Range[1, 100] (* Jean-François Alcover, Sep 27 2019, after Andrew Howroyd *)
-
a(n)={my(d=divisors(n)); vecsearch(vecsort(partitions(vecsum(d))), d)} \\ Andrew Howroyd, Jul 15 2018
-
\\ here b(n,k) is A026807.
b(n,k)=polcoeff(1/prod(i=k, n, 1-x^i + O(x*x^n)), n)
PartIndex(v)={my(s=1,t=0); forstep(i=#v, 1, -1, t+=v[i]; s+=b(t, if(i==1, 1, v[i-1])) - b(t, v[i])); s}
a(n)=PartIndex(divisors(n)); \\ Andrew Howroyd, Jul 15 2018
A194797
Imbalance of the sum of parts of all partitions of n.
Original entry on oeis.org
0, -2, 1, -7, 3, -21, 7, -49, 23, -97, 57, -195, 117, -359, 256, -624, 498, -1086, 909, -1831, 1634, -2986, 2833, -4847, 4728, -7700, 7798, -12026, 12537, -18633, 19745, -28479, 30723, -42955, 47100, -64284, 71136, -95228, 106402, -139718, 157327, -203495
Offset: 1
For n = 6 the illustration of the three views of the shell model with 6 shells shows an imbalance (see below):
------------------------------------------------------
Partitions Tree Table 1.0
of 6. A194805 A135010
------------------------------------------------------
6 6 6 . . . . .
3+3 3 3 . . 3 . .
4+2 4 4 . . . 2 .
2+2+2 2 2 . 2 . 2 .
5+1 1 5 5 . . . . 1
3+2+1 1 3 3 . . 2 . 1
4+1+1 4 1 4 . . . 1 1
2+2+1+1 2 1 2 . 2 . 1 1
3+1+1+1 1 3 3 . . 1 1 1
2+1+1+1+1 2 1 2 . 1 1 1 1
1+1+1+1+1+1 1 1 1 1 1 1 1
------------------------------------------------------
.
. 6 3 4 2 1 3 5
. Table 2.0 . . . . 1 . . Table 2.1
. A182982 . . . 2 1 . . A182983
. . 3 . . 1 2 .
. . . 2 2 1 . .
. . . . . 1
------------------------------------------------------
The sum of all parts > 1 on the left hand side is 34 and the sum of all parts > 1 on the right hand side is 13, so a(6) = -34 + 13 = -21. On the other hand for n = 6 the first n terms of A138880 are 0, 2, 3, 8, 10, 24 thus a(6) = 0-2+3-8+10-24 = -21.
Cf.
A000041,
A002865,
A135010,
A138121,
A138880,
A141285,
A182710,
A182742,
A182743,
A182746,
A182747,
A182982,
A182983,
A182994,
A182995,
A194796,
A194805.
-
with(combinat):
a:= proc(n) option remember;
n *(-1)^n *(numbpart(n-1)-numbpart(n)) +a(n-1)
end: a(0):=0:
seq(a(n), n=1..50); # Alois P. Heinz, Apr 04 2012
-
a[n_] := Sum[(-1)^(k-1)*k*(PartitionsP[k] - PartitionsP[k-1]), {k, 1, n}]; Array[a, 50] (* Jean-François Alcover, Dec 09 2016 *)
A273140
Number of parts in the corner of size n X n of the modular table of partitions described in Comments.
Original entry on oeis.org
1, 3, 6, 11, 17, 25, 34, 46, 59, 74, 90, 109, 129, 151, 174, 201, 229, 259, 290, 323, 358, 394, 434, 475, 518, 562, 609, 657, 707, 758, 814, 871, 930, 990, 1052, 1116, 1181, 1249, 1318, 1389, 1462, 1536, 1615, 1695, 1777, 1860, 1946, 2033, 2122, 2212, 2305, 2400, 2496, 2594, 2694, 2795
Offset: 1
For n = 4 the corner of size 4 X 4 of the modular table of partitions contains 11 parts as shown below, so a(4) = 11.
.
. Row _ _ _ _ Parts
. 1 |_| | | | 4
. 2 |_ _| | | 3
. 3 |_ _ _| | 2
. 4 |_ _| | 2
. ----
. Total 11
.
For n = 20 the corner of size 20 X 20 of the modular table of partitions contains 323 parts as shown below, so a(20) = 323.
.
. Row _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Parts
. 1 |_| | | | | | | | | | | | | | | | | | | | 20
. 2 |_ _| | | | | | | | | | | | | | | | | | | 19
. 3 |_ _ _| | | | | | | | | | | | | | | | | | 18
. 4 |_ _| | | | | | | | | | | | | | | | | | 18
. 5 |_ _ _ _| | | | | | | | | | | | | | | | | 17
. 6 |_ _ _| | | | | | | | | | | | | | | | | 17
. 7 |_ _ _ _ _| | | | | | | | | | | | | | | | 16
. 8 |_ _| | | | | | | | | | | | | | | | | 17
. 9 |_ _ _ _| | | | | | | | | | | | | | | | 16
. 10 |_ _ _| | | | | | | | | | | | | | | | 16
. 11 |_ _ _ _ _ _| | | | | | | | | | | | | | | 15
. 12 |_ _ _| | | | | | | | | | | | | | | | 16
. 13 |_ _ _ _ _| | | | | | | | | | | | | | | 15
. 14 |_ _ _ _| | | | | | | | | | | | | | | 15
. 15 |_ _ _ _ _ _ _| | | | | | | | | | | | | | 14
. 16 |_ _| | | | | | | | | | | | | | | | 16
. 17 |_ _ _ _| | | | | | | | | | | | | | | 15
. 18 |_ _ _| | | | | | | | | | | | | | | 15
. 19 |_ _ _ _ _ _| | | | | | | | | | | | | | 14
. 20 |_ _ _ _ _| | | | | | | | | | | | | | 14
. -----
. Total 323
.
Comments