cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A325071 Prime numbers congruent to 1 modulo 20 representable by both x^2 + 20*y^2 and x^2 + 100*y^2.

Original entry on oeis.org

101, 181, 401, 461, 521, 541, 761, 941, 1021, 1061, 1361, 1601, 1621, 1721, 1741, 1861, 2081, 2441, 2621, 2801, 2861, 3001, 3121, 3301, 3461, 3581, 3821, 3881, 4001, 4021, 4201, 4441, 4561, 4621, 4861, 5021, 5081, 5101, 5261, 5281, 5441, 5741, 5861, 5981, 6221
Offset: 1

Views

Author

Rémy Sigrist, Mar 27 2019

Keywords

Comments

Brink showed that prime numbers congruent to 1 modulo 20 are representable by both or neither of the quadratic forms x^2 + 20*y^2 and x^2 + 100*y^2. This sequence corresponds to those representable by both, and A325072 corresponds to those representable by neither.

Examples

			Regarding 1601:
- 1601 is a prime number,
- 1601 = 80*20 + 1,
- 1601 = 39^2 + 20*2^2 = 1^2 + 100*4^2,
- hence 1601 belongs to this sequence.
		

Crossrefs

See A325067 for similar results.

Programs

  • PARI
    See Links section.

A325072 Prime numbers congruent to 1 modulo 20 neither representable by x^2 + 20*y^2 nor by x^2 + 100*y^2.

Original entry on oeis.org

41, 61, 241, 281, 421, 601, 641, 661, 701, 821, 881, 1181, 1201, 1301, 1321, 1381, 1481, 1801, 1901, 2141, 2161, 2221, 2281, 2341, 2381, 2521, 2741, 3041, 3061, 3181, 3221, 3361, 3541, 3701, 3761, 4241, 4261, 4421, 4481, 4721, 4801, 5381, 5501, 5521, 5581
Offset: 1

Views

Author

Rémy Sigrist, Mar 27 2019

Keywords

Comments

Brink showed that prime numbers congruent to 1 modulo 20 are representable by both or neither of the quadratic forms x^2 + 20*y^2 and x^2 + 100*y^2. A325071 corresponds to those representable by both, and this sequence corresponds to those representable by neither.

Examples

			Regarding 2221:
- 2221 is a prime number,
- 2221 = 111*20 + 1,
- 2221 is neither representable by x^2 + 20*y^2 nor by x^2 + 100*y^2,
- hence 2221 belongs to this sequence.
		

Crossrefs

See A325067 for similar results.

Programs

  • PARI
    \\ See Links section.

A263770 Smallest prime q such that (prime(n)^2 + q*prime(n))/(prime(n) + 1) is an integer.

Original entry on oeis.org

7, 5, 7, 17, 13, 29, 19, 41, 73, 31, 97, 191, 43, 89, 97, 109, 61, 311, 137, 73, 149, 241, 337, 181, 197, 103, 313, 109, 331, 229, 257, 397, 139, 281, 151, 457, 317, 821, 337, 349, 181, 547, 193, 389, 199, 401, 1061, 449, 229, 461, 937, 241, 727, 757, 1033, 1321, 271, 1361, 557
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

Least prime q such that q == 1 (mod prime(n) + 1).

Crossrefs

Programs

  • Mathematica
    Table[q = 2; While[! IntegerQ[(Prime[n]^2 + q Prime@ n)/(Prime@ n + 1)], q = NextPrime@ q]; q, {n, 59}] (* Michael De Vlieger, Oct 26 2015 *)
  • PARI
    a(n) = {p = prime(n); q = 2; while ((p^2 + p*q) % (p + 1), q = nextprime(q+1)); q;} \\ Michel Marcus, Oct 26 2015

Formula

5 is in this sequence because (prime(2)^2 + 5*prime(2))/(prime(2) + 1) = 6 and 5 is prime.

A141870 Primes congruent to 4 mod 19.

Original entry on oeis.org

23, 61, 137, 251, 479, 593, 631, 821, 859, 1049, 1087, 1163, 1201, 1277, 1429, 1543, 1619, 1657, 1733, 1847, 1999, 2113, 2341, 2417, 2531, 2683, 2797, 3253, 3329, 3557, 3671, 3709, 3823, 4013, 4051, 4127, 4241, 4507, 4583, 4621, 5039, 5077, 5153, 5381, 5419
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 18n log n. - Charles R Greathouse IV, Jul 03 2016

A141871 Primes congruent to 6 mod 19.

Original entry on oeis.org

101, 139, 367, 443, 557, 709, 823, 937, 1013, 1051, 1279, 1583, 1621, 1697, 1811, 2039, 2153, 2267, 2381, 2609, 2647, 2837, 3217, 3331, 3407, 3559, 3673, 3863, 4091, 4129, 4243, 4357, 4547, 4813, 4889, 5003, 5231, 5573, 5801, 5839, 5953, 6029, 6067, 6143
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 18n log n. - Charles R Greathouse IV, Jul 03 2016

A141872 Primes congruent to 7 mod 19.

Original entry on oeis.org

7, 83, 197, 311, 349, 463, 577, 653, 691, 881, 919, 1033, 1109, 1223, 1451, 1489, 1831, 1907, 2287, 2477, 2591, 2819, 2857, 2971, 3313, 3389, 3541, 3617, 3769, 4073, 4111, 4339, 4567, 4643, 4871, 4909, 5023, 5099, 5441, 5479, 5669, 5783, 5821, 5897, 6011
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 18n log n. - Charles R Greathouse IV, Jul 03 2016

A141884 Primes congruent to 11 mod 20.

Original entry on oeis.org

11, 31, 71, 131, 151, 191, 211, 251, 271, 311, 331, 431, 491, 571, 631, 691, 751, 811, 911, 971, 991, 1031, 1051, 1091, 1151, 1171, 1231, 1291, 1451, 1471, 1511, 1531, 1571, 1811, 1831, 1871, 1931, 1951, 2011, 2111, 2131, 2251, 2311, 2351, 2371, 2411, 2531, 2551
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 8n log n. - Charles R Greathouse IV, Jul 03 2016

A216257 a(n) = 840*n^2 - 23100*n + 86861.

Original entry on oeis.org

86861, 64601, 44021, 25121, 7901, -7639, -21499, -33679, -44179, -52999, -60139, -65599, -69379, -71479, -71899, -70639, -67699, -63079, -56779, -48799, -39139, -27799, -14779, -79, 16301, 34361, 54101, 75521, 98621, 123401, 149861, 178001, 207821, 239321, 272501
Offset: 0

Views

Author

Arkadiusz Wesolowski, Mar 15 2013

Keywords

Comments

|a(n)| are distinct primes for 0 <= n <= 32.
The values of this polynomial are never divisible by a prime less than 79.
All terms are congruent to 1 (mod 20).

Crossrefs

Programs

  • Magma
    [ 840*n^2-23100*n+86861 : n in [0..34]];
    
  • Maple
    seq(840*n^2-23100*n+86861, n=0..34);
  • Mathematica
    Table[840*n^2 - 23100*n + 86861, {n, 0, 34}]
  • PARI
    for(n=0, 34, print1(840*n^2-23100*n+86861, ", "))

Formula

G.f.: (86861 - 195982*x + 110801*x^2)/(1-x)^3.
From Elmo R. Oliveira, Feb 10 2025: (Start)
E.g.f.: exp(x)*(86861 - 22260*x + 840*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Previous Showing 11-18 of 18 results.