cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A320896 a(n) = Sum_{k=1..n} k * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 9, 21, 57, 77, 173, 201, 329, 410, 570, 614, 1046, 1098, 1322, 1562, 1962, 2030, 2678, 2754, 3474, 3810, 4162, 4254, 5790, 6015, 6431, 6863, 7871, 7987, 9907, 10031, 11183, 11711, 12255, 12815, 15731, 15879, 16487, 17111, 19671, 19835, 22523, 22695, 24279
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^2 * (3*(Pi^6*(-1 - 24*g^2 + 32*g^3 + g*(8 - 96*s1) + 16*s1 + 16*s2) - 13824*z1^3 + 576*Pi^2*z1*((-1 + 8*g)*z1 + 4*z2) - 8*Pi^4*(3*(1 - 8*g + 24*g^2 - 16*s1)*z1 - 6*z2 + 48*g*z2 + 8*z3)) + 6*(Pi^6*(1 - 8*g + 24*g^2 - 16*s1) + 576*Pi^2*z1^2 - 24*Pi^4*(-z1 + 8*g*z1 + 2*z2))*log(n) + 6*((-1 + 8*g)*Pi^6 - 24*Pi^4*z1)*log(n)^2 + 4*Pi^6*log(n)^3) / (8*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

A320897 a(n) = Sum_{k=1..n} k^2 * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 17, 53, 197, 297, 873, 1069, 2093, 2822, 4422, 4906, 10090, 10766, 13902, 17502, 23902, 25058, 36722, 38166, 52566, 59622, 67366, 69482, 106346, 111971, 122787, 134451, 162675, 166039, 223639, 227483, 264347, 281771, 300267, 319867, 424843, 430319, 453423
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Comments

In general, for m>=0, Sum_{k=1..n} k^m * tau(k)^2 ~ n^(m+1) * (log(n))^3 / ((m+1) * Pi^2).

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^3 * (2*Pi^6*(-1 + 12*g - 54*g^2 + 108*g^3 + 36*s1 - 324*g*s1 + 54*s2) - 93312*z1^3 + 2592*Pi^2*z1*(-z1 + 12*g*z1 + 6*z2) - 72*Pi^4*(z1 - 12*g*z1 + 54*g^2*z1 - 36*s1*z1 - 3*z2 + 36*g*z2 + 6*z3) + 6*(Pi^6*(1 - 12*g + 54*g^2 - 36*s1) + 1296*Pi^2*z1^2 - 36*Pi^4*(-z1 + 12*g*z1 + 3*z2))*log(n) + 9*((-1 + 12*g)*Pi^6 - 36*Pi^4*z1)*log(n)^2 + 9*Pi^6*log(n)^3) / (27*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

A348392 Row sums of the irregular triangle A348389.

Original entry on oeis.org

2, 5, 13, 18, 36, 43, 67, 85, 115, 126, 186, 199, 241, 286, 350, 367, 457, 476, 576, 639, 705, 728, 896, 946, 1024, 1105, 1245, 1274, 1484, 1515, 1675, 1774, 1876, 1981, 2269, 2306, 2420, 2537, 2817
Offset: 2

Views

Author

Wolfdieter Lang, Oct 31 2021

Keywords

Examples

			n = 4: Compare the row of an array with all multiples of k <= n, for k = 1,2, ..., n with the row of A348389:
All multiples of k <= 4 for k = 1..4:  [1 2 3 4|2 4|3|4] with row sum A143127(4) = 23.
A348389 row 4: [2 3 4|4] with 1, 2, 3 and 4 missing: row sum is 23 - 4*5/2  = 13. Hence a(4) = A143127(4) - A000217(4).
Also: a(4) =  A348391(4) - A153485(4) = 18 - 5 = 13.
		

Crossrefs

Formula

a(n) = Sum_{m=1.. A002541(n)} A348389(n, m), for n >= 2.
a(n) = A143127(n) - A000217(n).
a(n) = A348391(n) - A153485(n).

A350108 a(n) = Sum_{k=1..n} k * floor(n/k)^3.

Original entry on oeis.org

1, 10, 32, 87, 153, 309, 443, 722, 1005, 1443, 1785, 2605, 3087, 3951, 4875, 6154, 6988, 8809, 9855, 12057, 13853, 16001, 17543, 21347, 23478, 26484, 29440, 33696, 36162, 41994, 44816, 50351, 54755, 59909, 64577, 73524, 77558, 84002, 90142, 100072, 105034
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2021

Keywords

Crossrefs

Column 3 of A350106.

Programs

  • Mathematica
    a[n_] := Sum[k * Floor[n/k]^3, {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Dec 14 2021 *)
    Accumulate[Table[(1 + 3*k)*DivisorSigma[1, k] - 3*k*DivisorSigma[0, k], {k, 1, 50}]] (* Vaclav Kotesovec, Dec 16 2021 *)
  • PARI
    a(n) = sum(k=1, n, k*(n\k)^3);
    
  • PARI
    a(n) = sum(k=1, n, k*sumdiv(k, d, (d^3-(d-1)^3)/d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k/(1-x^k)^2)/(1-x))
    
  • Python
    from math import isqrt
    def A350108(n): return -(s:=isqrt(n))**4*(s+1)+sum((q:=n//k)*(k**2*(3*(q+1))+k*(q*((q<<1)-3)-3)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 31 2023

Formula

a(n) = Sum_{k=1..n} k * Sum_{d|k} (d^3 - (d - 1)^3)/d.
G.f.: (1/(1 - x)) * Sum_{k>=1} (k^3 - (k - 1)^3) * x^k/(1 - x^k)^2.
From Vaclav Kotesovec, Aug 03 2022: (Start)
a(n) = A024916(n) + 3*A143128(n) - 3*A143127(n).
a(n) ~ Pi^2*n^3/6 - 3*n^2*log(n)/2. (End)

A110661 Triangle read by rows: T(n,k) = total number of divisors of k, k+1, ..., n (1 <= k <= n).

Original entry on oeis.org

1, 3, 2, 5, 4, 2, 8, 7, 5, 3, 10, 9, 7, 5, 2, 14, 13, 11, 9, 6, 4, 16, 15, 13, 11, 8, 6, 2, 20, 19, 17, 15, 12, 10, 6, 4, 23, 22, 20, 18, 15, 13, 9, 7, 3, 27, 26, 24, 22, 19, 17, 13, 11, 7, 4, 29, 28, 26, 24, 21, 19, 15, 13, 9, 6, 2, 35, 34, 32, 30, 27, 25, 21, 19, 15, 12, 8, 6, 37, 36, 34
Offset: 1

Views

Author

Emeric Deutsch, Aug 02 2005

Keywords

Comments

Equals A000012 * (A000005 * 0^(n-k)) * A000012, 1 <= k <= n. - Gary W. Adamson, Jul 26 2008
Row sums = A143127. - Gary W. Adamson, Jul 26 2008

Examples

			T(4,2)=7 because 2 has 2 divisors, 3 has 2 divisors and 4 has 3 divisors.
Triangle begins:
   1;
   3, 2;
   5, 4, 2;
   8, 7, 5, 3;
  10, 9, 7, 5, 2;
  ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=(n,k)->add(tau(j),j=k..n): for n from 1 to 13 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, n_] := DivisorSigma[0, n]; T[n_, k_] := Sum[DivisorSigma[0, j], {j, k, n}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Sep 03 2017 *)

Formula

T(n, k) = Sum_{j=k..n} tau(j), where tau(j) is the number of divisors of j, and 1 <= k <= n.
T(n,n) = tau(n) = A000005(n) = number of divisors of n.
T(n,1) = Sum_{j=1..n} tau(j) = A006218(n).

A143310 Triangle read by rows, A000012 * A127446, 1 <= k <= n.

Original entry on oeis.org

1, 3, 2, 6, 2, 3, 10, 6, 3, 4, 15, 6, 3, 4, 5, 21, 12, 9, 4, 5, 6, 28, 12, 9, 4, 5, 6, 7, 36, 20, 9, 12, 5, 6, 7, 8, 45, 20, 18, 12, 5, 6, 7, 8, 9, 55, 30, 18, 12, 15, 6, 7, 8, 9, 10, 66, 30, 18, 12, 15, 6, 7, 8, 9, 10, 11, 78, 42, 30, 24, 15, 18, 7, 8, 9, 10, 11, 12
Offset: 1

Views

Author

Gary W. Adamson, Aug 06 2008

Keywords

Comments

Row sums = A143127: (1, 5, 11, 23, 33, 57, 71, ...).

Examples

			First few rows of the triangle:
   1;
   3,  2;
   6,  2,  3;
  10,  6,  3,  4;
  15,  6,  3,  4,  5;
  21, 12,  9,  4,  5,  6;
  28, 12,  9,  4,  5,  6,  7;
  36, 20,  9, 12,  5,  6,  7,  8;
  ...
		

Crossrefs

Formula

Triangle read by rows, A000012 * A127446, 1 <= k <= n.
Conjecture: T(n,k) = Sum_{i=1..n} [i*k <= n]*i*k. - Mats Granvik, Feb 26 2021

Extensions

Duplicate a(11)-a(15) terms removed by Mats Granvik, Feb 26 2021

A344746 a(n) = Sum_{k=1..n} d(k) * k^c(n/k), where c(n) = 1 - ceiling(n) + floor(n).

Original entry on oeis.org

1, 5, 9, 19, 18, 40, 28, 59, 51, 73, 49, 136, 61, 107, 113, 164, 84, 210, 96, 235, 166, 180, 120, 397, 167, 217, 227, 338, 159, 469, 173, 419, 275, 293, 287, 682, 214, 332, 330, 667, 240, 666, 254, 549, 538, 412, 280, 1056, 357, 619, 447, 658, 323, 907, 475, 944, 507, 533, 365
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 02 2021

Keywords

Comments

For 1 <= k <= n, if k|n then add k * d(k), otherwise add d(k).
If p is prime, a(p) = Sum_{k=1..p} d(k) * k^c(p/k) = 2*p + Sum_{k=1..p-1} d(k) = 2*p - 2 + d(p) + Sum_{k=1..p-1} d(k) = 2*p - 2 + Sum_{k=1..p} d(k).

Examples

			a(8) = Sum_{k=1..8} d(k) * k^c(8/k) = d(1)*1^1 + d(2)*2^1 + d(3)*3^0 + d(4)*4^1 + d(5)*5^0 + d(6)*6^0 + d(7)*7^0 + d(8)*8^1 = 1*1 + 2*2 + 2*1 + 3*4 + 2*1 + 4*1 + 2*1 + 4*8 = 59.
		

Crossrefs

Cf. A000005 (tau), A006218, A143127.

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0, k] k^(1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]
Previous Showing 11-17 of 17 results.