cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A147580 Numbers with exactly 7 distinct odd prime divisors {3,5,7,11,13,17,19}.

Original entry on oeis.org

4849845, 14549535, 24249225, 33948915, 43648605, 53348295, 63047985, 72747675, 82447365, 92147055, 101846745, 121246125, 130945815, 160044885, 169744575, 189143955, 218243025, 237642405, 247342095, 266741475, 276441165, 305540235, 315239925, 363738375, 373438065
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Numbers k such that phi(k)/k = m
( Family of sequences for successive n odd primes )
m=2/3 numbers with exactly 1 distinct prime divisor {3} see A000244
m=8/15 numbers with exactly 2 distinct prime divisors {3,5} see A033849
m=16/35 numbers with exactly 3 distinct prime divisors {3,5,7} see A147576
m=32/77 numbers with exactly 4 distinct prime divisors {3,5,7,11} see A147577
m=384/1001 numbers with exactly 5 distinct prime divisors {3,5,7,11,13} see A147578
m=6144/17017 numbers with exactly 6 distinct prime divisors {3,5,7,11,13,17} see A147579
m=3072/323323 numbers with exactly 7 distinct prime divisors {3,5,7,11,13,17,19} see A147580
m=110592/323323 numbers with exactly 8 distinct prime divisors {3,5,7,11,13,17,19,23} see A147581

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[4849845 x] == 1658880 x, AppendTo[a, 4849845 x]], {x, 1, 100}]; a

Formula

Sum_{n>=1} 1/a(n) = 1/1658880. - Amiram Eldar, Dec 22 2020

Extensions

More terms from Amiram Eldar, Mar 11 2020

A147575 Numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19}.

Original entry on oeis.org

9699690, 19399380, 29099070, 38798760, 48498450, 58198140, 67897830, 77597520, 87297210, 96996900, 106696590, 116396280, 126095970, 135795660, 145495350, 155195040, 164894730, 174594420, 184294110, 193993800, 203693490, 213393180, 232792560, 242492250, 252191940
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Successive numbers k such that EulerPhi(x)/x = m:
( Family of sequences for successive n primes )
m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[9699690 x] == 1658880 x, AppendTo[a, 9699690 x]], {x, 1, 100}]; a

Formula

a(n) = 9699690 * A080682(n). - Amiram Eldar, Mar 10 2020
Sum_{n>=1} 1/a(n) = 1/1658880. - Amiram Eldar, Nov 12 2020

Extensions

More terms from Amiram Eldar, Mar 10 2020

A307534 Heinz numbers of strict integer partitions with 3 parts, all of which are odd.

Original entry on oeis.org

110, 170, 230, 310, 374, 410, 470, 506, 590, 670, 682, 730, 782, 830, 902, 935, 970, 1030, 1034, 1054, 1090, 1265, 1270, 1298, 1370, 1394, 1426, 1474, 1490, 1570, 1598, 1606, 1670, 1705, 1790, 1826, 1886, 1910, 1955, 1970, 2006, 2110, 2134, 2162, 2255, 2266
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A001399.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   110: {1,3,5}
   170: {1,3,7}
   230: {1,3,9}
   310: {1,3,11}
   374: {1,5,7}
   410: {1,3,13}
   470: {1,3,15}
   506: {1,5,9}
   590: {1,3,17}
   670: {1,3,19}
   682: {1,5,11}
   730: {1,3,21}
   782: {1,7,9}
   830: {1,3,23}
   902: {1,5,13}
   935: {3,5,7}
   970: {1,3,25}
  1030: {1,3,27}
  1034: {1,5,15}
  1054: {1,7,11}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],SquareFreeQ[#]&&PrimeNu[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot, nextprime
    def A307534(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1) for a,k in filter(lambda x:x[0]&1,enumerate(primerange(2,integer_nthroot(x,3)[0]+1),1)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(nextprime(k)+1,isqrt(x//k)+1),a+2))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 20 2024

A147572 Numbers with exactly 5 distinct prime divisors {2,3,5,7,11}.

Original entry on oeis.org

2310, 4620, 6930, 9240, 11550, 13860, 16170, 18480, 20790, 23100, 25410, 27720, 32340, 34650, 36960, 41580, 46200, 48510, 50820, 55440, 57750, 62370, 64680, 69300, 73920, 76230, 80850, 83160, 92400, 97020, 101640, 103950, 110880, 113190, 115500, 124740, 127050
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Successive numbers k such that EulerPhi(x)/x = m:
( Family of sequences for successive n primes )
m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 16/77, AppendTo[a, x]], {x, 1, 100000}]; a
    Select[Range[130000],FactorInteger[#][[All,1]]=={2,3,5,7,11}&] (* Harvey P. Dale, Oct 04 2020 *)
  • Python
    from sympy import integer_log, prevprime
    def A147572(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,11)
        return 2310*bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

a(n) = 2310 * A051038(n). - Amiram Eldar, Mar 10 2020
Sum_{n>=1} 1/a(n) = 1/480. - Amiram Eldar, Nov 12 2020

Extensions

More terms from Amiram Eldar, Mar 10 2020

A147577 Numbers with exactly 4 distinct odd prime divisors {3,5,7,11}.

Original entry on oeis.org

1155, 3465, 5775, 8085, 10395, 12705, 17325, 24255, 28875, 31185, 38115, 40425, 51975, 56595, 63525, 72765, 86625, 88935, 93555, 114345, 121275, 139755, 144375, 155925, 169785, 190575, 202125, 218295, 259875, 266805, 280665, 282975, 317625
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Numbers k such that phi(k)/k = m
( Family of sequences for successive n odd primes )
m=2/3 numbers with exactly 1 distinct prime divisor {3} see A000244
m=8/15 numbers with exactly 2 distinct prime divisors {3,5} see A033849
m=16/35 numbers with exactly 3 distinct prime divisors {3,5,7} see A147576
m=32/77 numbers with exactly 4 distinct prime divisors {3,5,7,11} see A147577
m=384/1001 numbers with exactly 5 distinct prime divisors {3,5,7,11,13} see A147578
m=6144/17017 numbers with exactly 6 distinct prime divisors {3,5,7,11,13,17} see A147579
m=3072/323323 numbers with exactly 7 distinct prime divisors {3,5,7,11,13,17,19} see A147580
m=110592/323323 numbers with exactly 8 distinct prime divisors {3,5,7,11,13,17,19,23} see A147581

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 32/77, AppendTo[a, x]], {x, 1, 1000000}]; a
    Select[Range[350000],EulerPhi[#]/#==32/77&] (* Harvey P. Dale, Mar 25 2016 *)
  • Python
    from sympy import integer_log
    def A147577(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i11 in range(integer_log(x,11)[0]+1):
                for i7 in range(integer_log(x11:=x//11**i11,7)[0]+1):
                    for i5 in range(integer_log(x7:=x11//7**i7,5)[0]+1):
                        c -= integer_log(x7//5**i5,3)[0]+1
            return c
        return 1155*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

Sum_{n>=1} 1/a(n) = 1/480. - Amiram Eldar, Dec 22 2020

A147578 Numbers with exactly 5 distinct odd prime divisors {3,5,7,11,13}.

Original entry on oeis.org

15015, 45045, 75075, 105105, 135135, 165165, 195195, 225225, 315315, 375375, 405405, 495495, 525525, 585585, 675675, 735735, 825825, 945945, 975975, 1126125, 1156155, 1216215, 1366365, 1486485, 1576575, 1756755, 1816815, 1876875, 2027025, 2147145, 2207205, 2477475
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Numbers k such that phi(k)/k = m
( Family of sequences for successive n odd primes )
m=2/3 numbers with exactly 1 distinct prime divisor {3} see A000244;
m=8/15 numbers with exactly 2 distinct prime divisors {3,5} see A033849;
m=16/35 numbers with exactly 3 distinct prime divisors {3,5,7} see A147576;
m=32/77 numbers with exactly 4 distinct prime divisors {3,5,7,11} see A147577;
m=384/1001 numbers with exactly 5 distinct prime divisors {3,5,7,11,13} see A147578;
m=6144/17017 numbers with exactly 6 distinct prime divisors {3,5,7,11,13,17} see A147579;
m=3072/323323 numbers with exactly 7 distinct prime divisors {3,5,7,11,13,17,19} see A147580;
m=110592/323323 numbers with exactly 8 distinct prime divisors {3,5,7,11,13,17,19,23} see A147581.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 384/1001, AppendTo[a, x]], {x, 1, 1000000}]; a

Formula

Sum_{n>=1} 1/a(n) = 1/5760. - Amiram Eldar, Dec 22 2020

Extensions

More terms from Amiram Eldar, Mar 11 2020

A147579 Numbers with exactly 6 distinct odd prime divisors {3,5,7,11,13,17}.

Original entry on oeis.org

255255, 765765, 1276275, 1786785, 2297295, 2807805, 3318315, 3828825, 4339335, 5360355, 6381375, 6891885, 8423415, 8933925, 9954945, 11486475, 12507495, 13018005, 14039025, 16081065, 16591575, 19144125, 19654635, 20675655, 21696675, 23228205, 25270245, 26801775
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Numbers k such that phi(k)/k = m
( Family of sequences for successive n odd primes )
m=2/3 numbers with exactly 1 distinct prime divisor {3} see A000244
m=8/15 numbers with exactly 2 distinct prime divisors {3,5} see A033849
m=16/35 numbers with exactly 3 distinct prime divisors {3,5,7} see A147576
m=32/77 numbers with exactly 4 distinct prime divisors {3,5,7,11} see A147577
m=384/1001 numbers with exactly 5 distinct prime divisors {3,5,7,11,13} see A147578
m=6144/17017 numbers with exactly 6 distinct prime divisors {3,5,7,11,13,17} see A147579
m=3072/323323 numbers with exactly 7 distinct prime divisors {3,5,7,11,13,17,19} see A147580
m=110592/323323 numbers with exactly 8 distinct prime divisors {3,5,7,11,13,17,19,23} see A147581

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[255255 x] == 92160 x, AppendTo[a, 255255 x]], {x, 1, 100}]; a

Formula

Sum_{n>=1} 1/a(n) = 1/92160. - Amiram Eldar, Dec 22 2020

Extensions

More terms from Amiram Eldar, Mar 11 2020

A147581 Numbers with exactly 8 distinct odd prime divisors {3,5,7,11,13,17,19,23}.

Original entry on oeis.org

111546435, 334639305, 557732175, 780825045, 1003917915, 1227010785, 1450103655, 1673196525, 1896289395, 2119382265, 2342475135, 2565568005, 2788660875, 3011753745, 3681032355, 3904125225, 4350310965, 5019589575, 5465775315, 5688868185, 6135053925, 6358146795
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Numbers k such that phi(k)/k = m
( Family of sequences for successive n odd primes )
m=2/3 numbers with exactly 1 distinct prime divisor {3} see A000244
m=8/15 numbers with exactly 2 distinct prime divisors {3,5} see A033849
m=16/35 numbers with exactly 3 distinct prime divisors {3,5,7} see A147576
m=32/77 numbers with exactly 4 distinct prime divisors {3,5,7,11} see A147577
m=384/1001 numbers with exactly 5 distinct prime divisors {3,5,7,11,13} see A147578
m=6144/17017 numbers with exactly 6 distinct prime divisors {3,5,7,11,13,17} see A147579
m=3072/323323 numbers with exactly 7 distinct prime divisors {3,5,7,11,13,17,19} see A147580
m=110592/323323 numbers with exactly 8 distinct prime divisors {3,5,7,11,13,17,19,23} see A147581

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[111546435 x] == 36495360 x, AppendTo[a, 111546435 x]], {x, 1, 100}]; a
  • Python
    from sympy import integer_log
    def A147581(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i23 in range(integer_log(x,23)[0]+1):
                for i19 in range(integer_log(x23:=x//23**i23,19)[0]+1):
                    for i17 in range(integer_log(x19:=x23//19**i19,17)[0]+1):
                        for i13 in range(integer_log(x17:=x19//17**i17,13)[0]+1):
                            for i11 in range(integer_log(x13:=x17//13**i13,11)[0]+1):
                                for i7 in range(integer_log(x11:=x13//11**i11,7)[0]+1):
                                    for i5 in range(integer_log(x7:=x11//7**i7,5)[0]+1):
                                        c -= integer_log(x7//5**i5,3)[0]+1
            return c
        return 111546435*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

Sum_{n>=1} 1/a(n) = 1/36495360. - Amiram Eldar, Dec 22 2020

Extensions

More terms from Amiram Eldar, Mar 11 2020

A147573 Numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13}.

Original entry on oeis.org

30030, 60060, 90090, 120120, 150150, 180180, 210210, 240240, 270270, 300300, 330330, 360360, 390390, 420420, 450450, 480480, 540540, 600600, 630630, 660660, 720720, 750750, 780780, 810810, 840840, 900900, 960960, 990990, 1051050, 1081080, 1171170, 1201200, 1261260
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Successive numbers k such that EulerPhi(x)/x = m:
( Family of sequences for successive n primes )
m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575
Although 39270 has exactly 6 distinct prime divisors (39270=2*3*5*7*11*17), it is not in this sequence because the 6 distinct prime divisors may only comprise 2, 3, 5, 7, 11, and 13. - Harvey P. Dale, Oct 11 2014

Crossrefs

Subsequence of A067885 and of A080197.

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 192/1001, AppendTo[a, x]], {x, 1, 100000}]; a
  • PARI
    is(n)=if(n%30030, return(0)); my(g=30030); while(g>1, n/=g; g=gcd(n,30030)); n==1 \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = 30030 * A080197(n). - Charles R Greathouse IV, Sep 14 2015
Sum_{n>=1} 1/a(n) = 1/5760. - Amiram Eldar, Nov 12 2020

Extensions

More terms from Amiram Eldar, Mar 10 2020

A147574 Numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17}.

Original entry on oeis.org

510510, 1021020, 1531530, 2042040, 2552550, 3063060, 3573570, 4084080, 4594590, 5105100, 5615610, 6126120, 6636630, 7147140, 7657650, 8168160, 8678670, 9189180, 10210200, 10720710, 11231220, 12252240, 12762750, 13273260, 13783770
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Successive numbers k such that EulerPhi(x)/x = m:
( Family of sequences for successive n primes )
m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[x 510510] == 92160 x, AppendTo[a, 510510 x]], {x, 1, 100}]; a
    sdpdQ[n_]:=Module[{f=FactorInteger[n][[All,1]]},Length[f]==7&&Max[f]==17]; Select[Range[510510,138*10^5,510510],sdpdQ] (* Harvey P. Dale, Aug 03 2019 *)

Formula

a(n) = 510510 * A080681(n). - Amiram Eldar, Mar 10 2020
Sum_{n>=1} 1/a(n) = 1/92160. - Amiram Eldar, Nov 12 2020
Previous Showing 11-20 of 35 results. Next