cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A334367 Decimal expansion of Sum_{k>=0} 1/(4*k+2)!!.

Original entry on oeis.org

5, 2, 1, 0, 9, 5, 3, 0, 5, 4, 9, 3, 7, 4, 7, 3, 6, 1, 6, 2, 2, 4, 2, 5, 6, 2, 6, 4, 1, 1, 4, 9, 1, 5, 5, 9, 1, 0, 5, 9, 2, 8, 9, 8, 2, 6, 1, 1, 4, 8, 0, 5, 2, 7, 9, 4, 6, 0, 9, 3, 5, 7, 6, 4, 5, 2, 8, 0, 2, 2, 5, 0, 8, 9, 0, 2, 3, 3, 5, 9, 2, 3, 1, 7, 0, 6, 4, 4, 5, 4, 2, 7, 4, 1, 8, 8, 5, 9, 3, 4, 8, 8, 2, 2, 1, 4, 2, 3, 9, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2020

Keywords

Comments

This constant is transcendental.

Examples

			1/(2^1*1!) + 1/(2^3*3!) + 1/(2^5*5!) + ... = 0.52109530549374736162242...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[1/2], 10, 110] [[1]]
  • PARI
    sinh(1/2) \\ Michel Marcus, Apr 25 2020

Formula

Equals sinh(1/2).
Equals (1/2) * Product_{k>=1} 1 + 1/(2*k*Pi)^2. - Amiram Eldar, Jul 16 2020

A227569 Decimal expansion of maximal value of function F[a(n); b(n)] for pairs of complements a(n) and b(n) of natural numbers A000027, where a(n) = odd numbers (A005408) and b(n) = even numbers (A005843); see Comments for the definition of function F[a(n); b(n)].

Original entry on oeis.org

2, 0, 5, 9, 4, 0, 7, 4, 0, 5, 3, 4, 2, 5, 7, 6, 1, 4, 4, 5, 3, 9, 4, 7, 5, 4, 9, 9, 2, 3, 3, 2, 7, 8, 6, 1, 2, 9, 7, 7, 2, 5, 4, 7, 2, 6, 3, 3, 5, 3, 4, 0, 2, 0, 9, 2, 9, 9, 7, 1, 8, 7, 7, 9, 8, 0, 5, 4, 4, 2, 8, 1, 9, 6, 8, 4, 6, 1, 3, 5, 3, 5, 7, 4, 8, 1, 8, 5, 7, 4, 4, 8, 3, 4, 9, 7, 8, 2, 8, 3, 1, 5, 0, 1, 5
Offset: 1

Views

Author

Jaroslav Krizek, Jul 16 2013

Keywords

Comments

Apart from the first digit, the same as A143280. The sum of the reciprocals of the double factorial numbers, Sum_{n>=1} 1/n!! = Sum_{n>=2} n!!/n!. - Robert G. Wilson v, Jun 27 2015
Definition of function F[a(n); b(n)]: Let a(n) and b(n) is pair of complements of natural numbers (A000027) with a(1) < a(2) < a(3) < ... and b(1) < b(2) < b(3) < ..., then F[a(n); b(n)] = F[a(n)] + F[b(n)]; where F[a(n)] = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... and F[b(n)] = 1/b(1) + 1/b(1)b(2) + 1/b(1)b(2)b(3) + ...
Value of function F[a(n); b(n)] is real number c = a + b, where a = real number whose Engel expansion is sequence a(n) and b = real number whose Engel expansion is sequence b(n). See A006784 for definition of Engel expansion.
Example for a(n) = odd numbers (A005408) and b(n) = even numbers (A005843): c = 2.059407... = a + b, where a = 1.410686... (A060196) and b = 0.648721... (A019774 - 1).
Example for a(n) = nonprime numbers (A018252) and b(n) = primes (A000040): c = 2.002747... = a + b, where a = 1.297516... and b = 0.705230... (A064648).
Conjecture: there are no pairs of complements a(n) and b(n) such that F[a(n); b(n)] = 2.
e - 1 <= F[a(n); b(n)] <= sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)) - 1.
1.71828182... (A091131) <= F[a(n); b(n)] <= 2.05940740....

Examples

			2.05940740534257614453947549923327861297725472633534020929971877980544281968...
		

Crossrefs

Cf. A000027, A005408, A005843, A091131 (e-1), A006882 (n!!), A143280 (m(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(112)); R:= RealField(); -1 + Exp(1/2)*(1 + Sqrt(Pi(R)/2)*Erf(1/Sqrt(2)) ); // G. C. Greubel, Apr 01 2019
    
  • Mathematica
    RealDigits[Sqrt[E] -1 + Sqrt[E*Pi/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* or *)
    RealDigits[Sum[1/n!!, {n, 125}], 10, 105][[1]] (* Robert G. Wilson v, Apr 09 2014 *)
  • PARI
    default(realprecision, 100); exp(1/2) - 1 + sqrt(exp(1)*Pi/2)*(1-erfc(1/sqrt(2))) \\ G. C. Greubel, Apr 01 2019
    
  • Sage
    numerical_approx(-1 + exp(1/2)*(1 + sqrt(pi/2)*erf(1/sqrt(2))), digits=112) # G. C. Greubel, Apr 01 2019

A202688 Decimal expansion of Sum_{n>=0} (-1)^n / n!!.

Original entry on oeis.org

2, 3, 8, 0, 3, 5, 1, 3, 6, 0, 5, 7, 6, 8, 0, 1, 4, 9, 1, 5, 7, 8, 2, 6, 0, 7, 6, 3, 9, 5, 0, 4, 8, 5, 3, 0, 3, 3, 0, 2, 9, 7, 4, 7, 5, 0, 8, 4, 9, 5, 5, 8, 1, 3, 8, 5, 0, 4, 3, 9, 8, 4, 3, 4, 7, 5, 8, 7, 9, 2, 2, 2, 7, 0, 3, 8, 1, 7, 6, 8, 1, 5, 1, 7, 3, 6, 7
Offset: 0

Views

Author

Michel Lagneau, Dec 24 2011

Keywords

Examples

			0.23803513605768014915782607639504...
		

Crossrefs

Cf. A006882 (n!!), A143280 (m(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(112)); R:= RealField(); Exp(1/2)*(1 - Sqrt(Pi(R)/2)*Erf(1/Sqrt(2)) ); // G. C. Greubel, Mar 28 2019
    
  • Maple
    with(numtheory):Digits:=200:s:=evalf(sum(‘((-1)^(i+1))*doublefactorial(i)/i! ’,’i’=1..100)):print(s):
  • Mathematica
    RealDigits[N[Sum[((-1)^(n+1))/n!!,{n,0,100}],105]][[1]]
    RealDigits[Sqrt[E] - Sqrt[(E*Pi)/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* G. C. Greubel, Mar 28 2019 *)
  • PARI
    exp(.5) - sqrt(exp(1)*Pi/2)*(1-erfc(sqrt(.5))) \\ Charles R Greathouse IV, Nov 21 2016
    
  • Sage
    numerical_approx(exp(1/2)*(1 - sqrt(pi/2)*erf(1/sqrt(2))), digits=112) # G. C. Greubel, Mar 28 2019

Formula

Equals Sum_{n>=1} (-1)^(n+1)*n!! /n!.
Equals sqrt(e) - sqrt(e*Pi/2)*erf(1/sqrt(2)).

Extensions

Terms a(80) onward corrected by G. C. Greubel, Mar 28 2019
Name corrected by Thomas Ordowski, Oct 22 2024

A334366 Decimal expansion of Sum_{k>=0} 1/(4*k)!!.

Original entry on oeis.org

1, 1, 2, 7, 6, 2, 5, 9, 6, 5, 2, 0, 6, 3, 8, 0, 7, 8, 5, 2, 2, 6, 2, 2, 5, 1, 6, 1, 4, 0, 2, 6, 7, 2, 0, 1, 2, 5, 4, 7, 8, 4, 7, 1, 1, 8, 0, 9, 8, 6, 6, 7, 4, 8, 3, 6, 2, 8, 9, 8, 5, 7, 3, 5, 1, 8, 7, 8, 5, 8, 7, 7, 0, 3, 0, 3, 9, 8, 2, 0, 1, 6, 3, 1, 5, 7, 1, 2, 0, 6, 5, 7, 8, 2, 1, 7, 8, 0, 4, 9, 5, 1, 4, 6, 4, 5, 2, 1, 3, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 24 2020

Keywords

Comments

This constant is transcendental.

Examples

			1/(2^0*0!) + 1/(2^2*2!) + 1/(2^4*4!) + ... = 1.1276259652063807852...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[1/2], 10, 110] [[1]]
  • PARI
    cosh(1/2) \\ Michel Marcus, Apr 25 2020

Formula

Equals cosh(1/2).
Equals Product_{k>=0} 1 + 1/((2*k+1)*Pi)^2. - Amiram Eldar, Jul 16 2020

A342033 Decimal expansion of m(10) = Sum_{n>=0} 1/n!10, the 10th reciprocal multifactorial constant.

Original entry on oeis.org

4, 1, 6, 5, 2, 4, 3, 7, 6, 5, 5, 5, 8, 3, 8, 4, 5, 9, 0, 7, 8, 7, 2, 6, 2, 4, 1, 0, 4, 4, 5, 5, 6, 0, 7, 3, 8, 2, 2, 8, 0, 3, 0, 7, 9, 5, 3, 7, 0, 7, 7, 2, 7, 7, 6, 7, 9, 4, 4, 2, 1, 9, 1, 1, 5, 0, 7, 0, 5, 8, 4, 7, 7, 3, 0, 9, 8, 7, 2, 5, 6, 8, 6, 2, 3, 2, 0, 1, 2, 7, 4, 8, 4, 2, 8, 6, 9, 3, 3, 8, 4, 1, 3, 8
Offset: 1

Views

Author

Bhoris Dhanjal, Feb 26 2021

Keywords

Comments

m(k) can be proved to approach a harmonic series (and diverge) as k approaches infinity.

Examples

			4.165243765558384590787262...
For n=10, the series is equal to 1+summation from n=1 to 10 (1/n)=9901/2520.
		

Crossrefs

Cf. A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Mathematica
    Multifactorial[n_, k_] := Abs[Apply[Times, Range[-n, -1, k]]]
    N[Sum[1/Multifactorial[n, 10], {n, 0, 10000}], 105]
    (* or *)
    ReciprocalFactorialSumConstant[k_] :=
    1/k Exp[1/k] (k + Sum[k^(j/k) Gamma[j/k, 0, 1/k], {j, k - 1}])
    N[ReciprocalFactorialSumConstant[10], 105]

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} (k^(j/k)*Gamma(j/k, 1/k))) where Gamma(a,x) the incomplete Gamma function.

A358361 Decimal expansion of the constant Sum_{j>=0} j!!/(2*j)!, where j!! indicates the double factorial of j.

Original entry on oeis.org

1, 5, 8, 7, 7, 0, 2, 6, 4, 7, 7, 2, 7, 6, 6, 0, 5, 0, 7, 9, 7, 1, 8, 0, 1, 2, 6, 6, 2, 8, 5, 5, 5, 3, 7, 3, 2, 2, 3, 5, 4, 8, 6, 2, 3, 2, 4, 6, 7, 7, 2, 1, 2, 5, 2, 7, 5, 1, 6, 3, 2, 0, 4, 7, 3, 5, 6, 6, 5, 1, 0, 4, 0, 4, 6, 7, 1, 8, 6, 9, 5, 4, 9, 5, 5, 2, 2
Offset: 1

Views

Author

Marco Ripà, Nov 12 2022

Keywords

Comments

Sum_{j>=0} j!!/(2j)! converges since Sum_{j>=0} j!!/j! converges by A143280 (and it is trivial to note that (2*j)! >= j! for any positive integer j).

Examples

			1.587702647727...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + Sum[(i)!!/(2i)!, {i,1,200}], 10, 105][[1]]

Formula

Equals Sum_{j>=0} A006882(j)/A010050(j).
Equals Sum_{j>=0} 1/(A264152(j)*j!).
Previous Showing 11-16 of 16 results.