cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A377846 Powerful numbers that are not divisible by the cubes of more than one distinct prime.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 441, 484, 500, 512, 529, 576, 625, 675, 676, 729, 784, 800, 841, 900, 961, 968, 972, 1024, 1089, 1125, 1152, 1156, 1225
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

Subsequence of A377821 and first differs from it at n = 33: A377821(33) = 432 = 2^4 * 3^3 is not a term of this sequence.
Numbers whose prime factorization has exponents that are all larger than 1 and no more than one exponent is larger than 2.

Crossrefs

Complement of A376936 within A001694.
Subsequence of A377821.
Subsequences: A143610, A377847.
Cf. A082020.

Programs

  • Mathematica
    q[n_] := Module[{e = Sort[FactorInteger[n][[;; , 2]]]}, Length[e] == 1 || e[[-2]] == 2]; With[{max = 1300}, Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], # == 1 || q[#] &]]
  • PARI
    is(k) = if(k == 1, 1, my(e = vecsort(factor(k)[, 2])); e[1] > 1 && (#e == 1 || e[#e - 1] == 2));

Formula

Sum_{n>=1} 1/a(n) = (15/Pi^2) * (1 + Sum_{p prime} 1/((p-1)*(p^2+1))) = 1.92240214785252516795... .

A166988 Products n of a square of a prime and a cube of a prime such that n-1 and n+1 are semiprimes.

Original entry on oeis.org

392, 14792, 19652, 48668, 55112, 197192, 291848, 783752, 908552, 963272, 1203052, 1541768, 1670792, 5081672, 5903048, 8193532, 9732872, 10089032, 10285412, 12241352, 13333448, 13960328, 14087432, 14818568, 15882248, 16290632
Offset: 1

Views

Author

Keywords

Comments

Intersection of A143610 and A124936.

Examples

			392 = 7^2*2^3; 391 = 17*23 and 393 = 3*131 are semiprimes, hence 392 is in the sequence.
14792 = 2^3*43^2 is in the sequence because 14791=7*2113 and 14793=3*4931 are semiprimes.
		

Crossrefs

Cf. A001248 (squares of primes), A030078 (cubes of primes), A001358 (semiprimes).

Programs

  • Mathematica
    f2[n_]:=Last/@FactorInteger[n]=={2,3}||Last/@FactorInteger[n]=={3,2}; f1[n_]:=Plus@@Last/@FactorInteger[n]==2; lst={};Do[If[f2[n],If[f1[n-1]&&f1[n+1],AppendTo[lst,n]]],{n,10!}];lst
    With[{prs=Prime[Range[300]]},Union[Select[Times@@@Tuples[{prs^2, prs^3}], PrimeOmega[#-1] == PrimeOmega[#+1]==2&]]] (* Harvey P. Dale, Aug 13 2013 *)
  • PARI
    {m=17000000; v=[]; forprime(j=2, sqrtint(m\8), a=j^2; g=sqrtn(m\a, 3); forprime(k=2, g, n=a*k^3; if(nKlaus Brockhaus, Oct 29 2009

Extensions

Edited by Klaus Brockhaus and R. J. Mathar, Oct 28 2009

A203663 Achilles number whose double is also an Achilles number.

Original entry on oeis.org

432, 972, 1944, 2000, 2700, 3456, 4500, 5292, 5400, 5488, 8748, 9000, 10584, 10800, 12348, 12500, 13068, 15552, 16000, 17496, 18000, 18252, 21168, 21296, 21600, 24300, 24500, 24696, 25000, 26136
Offset: 1

Views

Author

Antonio Roldán, Jan 04 2012

Keywords

Comments

Every term is a multiple of 4.

Examples

			15552 is in the sequence because 15552 = 2^6*3^5 (Achilles number) and 15552*2 = 2^7*3^5 is also an Achilles number.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local e2,F;
      e2:= padic:-ordp(n,2);
      if e2 < 2 then return false fi;
      F:= map(t -> t[2], ifactors(n/2^e2)[2]);
      min(F) > 1 and igcd(e2,op(F))=1 and igcd(e2+1,op(F))=1
    end proc:
    select(filter, [seq(i,i=4..10^5,4)]); # Robert Israel, Jan 16 2018
  • Mathematica
    achillesQ[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Min[ee] > 1 && GCD@@ee == 1];
    Select[Range[4, 10^5, 4], achillesQ[#] && achillesQ[2#]&] (* Jean-François Alcover, Sep 25 2020 *)
  • PARI
    achilles(n) = { n>1 & vecmin(factor(n)[, 2])>1 & !ispower(n) } \\ M. F. Hasler, 2010
    { for (n=1, 10^6, if (achilles(n)==1 && achilles(2*n)==1, print1(n,", "))); } \\ Antonio Roldán, Oct 07 2012
    
  • Python
    # uses program in A052486
    from itertools import count, islice
    from math import gcd
    from sympy import factorint
    def A203663_gen(): # generator of terms
        return map(lambda x:x[0],filter(lambda x:all(d>1 for d in x[1]) and gcd(*x[1])==1,map(lambda x: (x,factorint(x<<1).values()),(A052486(i) for i in count(1)))))
    A203663_list = list(islice(A203663_gen(),30)) # Chai Wah Wu, Sep 10 2024

A355462 Powerful numbers divisible by exactly 2 distinct primes.

Original entry on oeis.org

36, 72, 100, 108, 144, 196, 200, 216, 225, 288, 324, 392, 400, 432, 441, 484, 500, 576, 648, 675, 676, 784, 800, 864, 968, 972, 1000, 1089, 1125, 1152, 1156, 1225, 1296, 1323, 1352, 1372, 1444, 1521, 1568, 1600, 1728, 1936, 1944, 2000, 2025, 2116, 2304, 2312, 2500
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2022

Keywords

Comments

First differs from A286708 at n = 25.
Number of the form p^i * q^j, where p != q are primes and i,j > 1.
Numbers k such that A001221(k) = 2 and A051904(k) >= 2.
The possible values of the number of the divisors (A000005) of terms in this sequence is any composite number that is not 8 or twice a prime (A264828 \ {1, 8}).
675 = 3^3*5^2 and 676 = 2^2*13^2 are 2 consecutive integers in this sequence. There are no other such pairs below 10^22 (the lesser members of such pairs are terms of A060355).

Examples

			36 is a term since 36 = 2^2 * 3^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2500], Length[(e = FactorInteger[#][[;; , 2]])] == 2 && Min[e] > 1 &]
  • PARI
    is(n) = {my(f=factor(n)); #f~ == 2 && vecmin(f[,2]) > 1};

Formula

Sum_{n>=1} 1/a(n) = ((Sum_{p prime} (1/(p*(p-1))))^2 - Sum_{p prime} (1/(p^2*(p-1)^2)))/2 = 0.1583860791... .

A367781 Numbers with prime signature p^3 * q^2 whose difference from the next such number is a record low.

Original entry on oeis.org

72, 1323, 1352, 49923, 27725061981125
Offset: 1

Views

Author

Jon E. Schoenfield, Nov 29 2023

Keywords

Comments

If it exists, a(6) > 10^20.
Do there exist two numbers with prime signature p^3 * q^2 that differ by less than 3? If not, this sequence terminates at a(5) = 27725061981125.

Examples

			A143610, the sequence of numbers with prime signature p^3 * q^2, is 72, 108, 200, 392, 500, 675, 968, 1125, 1323, 1352, 1372, 2312, ...; the differences between its successive terms are 36, 92, 192, 108, 175, 293, 157, 198, 29, 20, 940, ..., and the first five record lows among those differences are 36, 29, 20, 5, 3, ...
------------------------------------------------  ----  -  --------------
  Two successive numbers of the form p^3 * q^2    diff  n            a(n)
------------------------------------------------  ----  -  --------------
2^3 *      3^2 =    72 | 3^3 *       2^2 =   108    36  1              72
3^3 *      7^2 =  1323 | 2^3 *      13^2 =  1352    29  2            1323
2^3 *     13^2 =  1352 | 7^3 *       2^2 =  1372    20  3            1352
3^3 *     43^2 = 49923 | 2^3 *      79^2 = 49928     5  4           49923
5^3 * 470957^2 =   ... | 2^3 * 1861621^2 =   ...     3  5  27725061981125
		

Crossrefs

Cf. A143610.

A375143 Numbers whose prime factorization has a minimum exponent that is larger than 1 and is 1 less than the maximum exponent.

Original entry on oeis.org

72, 108, 200, 392, 432, 500, 648, 675, 968, 1125, 1323, 1352, 1372, 1800, 2000, 2312, 2592, 2700, 2888, 3087, 3267, 3528, 3888, 4232, 4500, 4563, 5000, 5292, 5324, 5400, 5488, 6125, 6728, 7688, 7803, 8575, 8712, 8788, 9000, 9747, 9800, 10125, 10584, 10952, 11979
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Numbers k such that 2 <= A051904(k) = A051903(k) - 1.
Numbers that are product of two coprime nonsquarefree powers of squarefree numbers (A072777) with consecutive exponents.

Examples

			72 = 2^3 * 3^2 is a term since A051904(72) = 2 is larger than 1 and is 1 less than A051903(72) = 3.
		

Crossrefs

Subsequence of A001694.
Subsequences: A143610, A167747 \ {1, 2, 12}, A093136 \ {1, 2, 20}, A179666, A179702, A190472, A375073.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, 2 <= Min[e] == Max[e] - 1]; Select[Range[12000], q]
  • PARI
    is(k) = {my(e = factor(k)[,2]); k > 1 && 2 <= vecmin(e) && vecmin(e) + 1 == vecmax(e);}

Formula

Sum_{n>=1} 1/a(n) = Sum_{k>=2} f(k) = 0.053695635500385312854..., where f(k) = Product_{p prime} (1 + 1/p^k + 1/p^(k+1)) - zeta(k)/zeta(2*k) - zeta(k+1)/zeta(2*k+2) + 1 is the sum of reciprocals of the subset of numbers m with A051904(m) = k.

A381314 Powerful numbers that have a single exponent in their prime factorization that equals 2.

Original entry on oeis.org

4, 9, 25, 49, 72, 108, 121, 144, 169, 200, 288, 289, 324, 361, 392, 400, 500, 529, 576, 675, 784, 800, 841, 961, 968, 972, 1125, 1152, 1323, 1352, 1369, 1372, 1568, 1600, 1681, 1849, 1936, 2025, 2209, 2304, 2312, 2500, 2704, 2809, 2888, 2916, 3087, 3136, 3200
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Number of the form A036966(m)/p, m >= 2, where p is a prime divisor of A036966(m).

Crossrefs

Programs

  • Mathematica
    With[{max = 3200}, Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], Count[FactorInteger[#][[;; , 2]], 2] == 1 &]]
  • PARI
    isok(k) = if(k == 1, 0, my(e = factor(k)[, 2]); vecmin(e) > 1 && #select(x -> (x==2), e) == 1);

Formula

Sum_{n>=1} 1/a(n) = Sum_{p prime}((p-1)/(p^3-p^2+1)) * Product_{p prime} (1 + 1/(p^2*(p-1))) = 0.53045141423939736076... .

A216417 Numbers of the form p^2*q^3 where p, q are (not necessarily distinct) primes.

Original entry on oeis.org

32, 72, 108, 200, 243, 392, 500, 675, 968, 1125, 1323, 1352, 1372, 2312, 2888, 3087, 3125, 3267, 4232, 4563, 5324, 6125, 6728, 7688, 7803, 8575, 8788, 9747, 10952, 11979, 13448, 14283, 14792, 15125, 16807, 17672, 19652, 19773, 21125, 22472, 22707, 25947, 27436, 27848, 29768
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Crossrefs

Union of A143610 (where p != q) and A050997 (where p = q).

Programs

  • Mathematica
    With[{nn=50},Take[Union[First[#]^2 Last[#]^3&/@ Tuples[ Prime[ Range[ nn]],2]], nn]] (* Harvey P. Dale, Jan 17 2014 *)
Previous Showing 21-28 of 28 results.