cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A226731 a(n) = (2n - 1)!/(2n).

Original entry on oeis.org

20, 630, 36288, 3326400, 444787200, 81729648000, 19760412672000, 6082255020441600, 2322315553259520000, 1077167364120207360000, 596585001666576384000000, 388888194657798291456000000
Offset: 3

Views

Author

Wesley Ivan Hurt, Jun 15 2013

Keywords

Comments

For n < 3, the formula does not produce an integer.
The ratio of the product of the partition parts of 2n into exactly two parts to the sum of the partition parts of 2n into exactly two parts. For example, a(3) = 20, and 2*3 = 6 has 3 partitions into exactly two parts: (5,1), (4,2), (3,3). Forming the ratio of product to sum (of parts), we have (5*1*4*2*3*3)/(5+1+4+2+3+3) = 360/18 = 20. - Wesley Ivan Hurt, Jun 24 2013

Examples

			a(3) = (2*3 - 1)!/(2*3) = 5!/6 = 120/6 = 20.
		

Crossrefs

Programs

Formula

a(n) = A009445(n-1)/A005843(n) = A002674(n)/A001105(n). - Wesley Ivan Hurt, Jun 24 2013
a(n) ~ sqrt(Pi)*2^(2*n-1)*n^(2*n-3/2)/exp(2*n). - Ilya Gutkovskiy, Nov 01 2016
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=3} 1/a(n) = e - 8/3.
Sum_{n>=3} (-1)^(n+1)/a(n) = cos(1) + sin(1) - 4/3. (End)

A165233 Signed denominators of terms in series expansion of cos(x)+sin(x).

Original entry on oeis.org

1, 1, -2, -6, 24, 120, -720, -5040, 40320, 362880, -3628800, -39916800, 479001600, 6227020800, -87178291200, -1307674368000, 20922789888000, 355687428096000, -6402373705728000, -121645100408832000, 2432902008176640000
Offset: 0

Views

Author

Jaume Oliver Lafont, Sep 09 2009

Keywords

Comments

Sum(n>=0,1/a(n))=cos(1)+sin(1).
Sum(n>=0,(Pi/4)^n/a(n))=sqrt(2).
Numerators are in A000012. - Alois P. Heinz, Jan 20 2016

Crossrefs

Programs

  • Mathematica
    Sign@ # Denominator@ # & /@ CoefficientList[Series[Cos@ x + Sin@ x, {x, 0, 20}], x] (* Michael De Vlieger, Oct 08 2016 *)
  • PARI
    a(n)=(-1)^(n\2)*n!

Formula

a(n)=(-1)^floor(n/2)*n! = A057077(n)*A000142(n).
a(n)=(sin(n*Pi/2)+cos(n*Pi/2))*n!.
a(n)=sqrt(2)*sin((2n+1)*Pi/4)*n!.
a(n)=sqrt(2)*cos((2n-1)*Pi/4)*n!.
G.f. Q(0) where Q(k)= 1 + x*(4*k+1)/(1 + 2*x*(2*k+1)/(1 - 2*x*(2*k+1) - x*(4*k+3)/(1 + x*(4*k+3) - 4*x*(k+1)/(4*x*(k+1) - 1/Q(k+1))))); (continued fraction, 3rd kind, 5-step). - Sergei N. Gladkovskii, Aug 15 2012
E.g.f.: (1 + x)/(1 + x^2). - Ilya Gutkovskiy, Oct 08 2016

A371934 Decimal expansion of Sum_{k>=0} (-1)^k / ((k+1)*(2*k)!).

Original entry on oeis.org

7, 6, 3, 5, 4, 6, 5, 8, 1, 3, 5, 2, 0, 7, 2, 4, 4, 8, 1, 0, 6, 8, 7, 7, 8, 5, 8, 1, 4, 6, 5, 5, 1, 2, 0, 6, 7, 0, 9, 7, 4, 6, 9, 6, 2, 8, 3, 2, 5, 8, 6, 5, 8, 6, 6, 8, 5, 6, 9, 7, 9, 3, 0, 7, 4, 6, 0, 2, 1, 5, 9, 8, 3, 3, 1, 4, 2, 2, 8, 6, 6, 9, 3, 3, 1, 8
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2024

Keywords

Examples

			0.7635465813520724481068778581465512067097...
		

Crossrefs

Programs

  • Maple
    hypergeom([1], [1/2, 2], -1/4) ; evalf(%) ; # R. J. Mathar, Jul 03 2024
  • Mathematica
    s = N[Sum[(-1)^k/((k + 1) (2 k)!), {k, 0, Infinity}], 120]
    First[RealDigits[s]]

Formula

Equals 2*(A143623 - 1).
Previous Showing 11-13 of 13 results.