cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A334080 Number of Pythagorean triples among the divisors of 60*n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 3, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 6, 4, 6, 2, 8, 2, 6, 4, 5, 4, 9, 2, 4, 6, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 9, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 6, 8, 2, 8, 4, 9, 2, 12, 2, 4, 6, 6, 4, 12, 2, 10, 5, 4, 2, 12, 4
Offset: 1

Views

Author

Michel Lagneau, Apr 14 2020

Keywords

Comments

The odd numbers of the sequence are rare (see the table below).
The subsequence of odd terms begins with 1, 3, 3, 3, 5, 3, 5, 9, 3, 9, 7, 9, 5, 9, 9, 3, 11, 15, 5, 9, 5, 15, 9, 9, 9, 5, 19, 3, 15, 15, 9, ... (see the table at the link).
It is interesting to note that each set of divisors of A169823(n) contains m primitive Pythagorean triples for some n, m = 1, 2, ...
Examples:
- The set of divisors of A169823(1)= 60 contains only one primitive Pythagorean triple: (3, 4, 5).
- The set of divisors of A169823(136) = 8160 contains two primitive Pythagorean triples: (3, 4, 5) and (8, 15, 17).
- The set of divisors of A169823(910) = 54600 contains three primitive Pythagorean triples: (3, 4, 5), (5, 12, 13) and (7, 24, 25).
There is an interesting property: we observe that a(n) = A000005(n) except for n in the set {13, 26, 34, 39, 52, 65, 68, 70, 78, 91, 102, ...}. This set contains subset of numbers of the form 13*k, 34*k, 70*k, 203*k, 246*k, 259*k, ... for k = 1, 2, ...
We recognize the sequence A081752: {13, 34, 70, 203, 246, 259, 671, ...} (ordered product of the sides of primitive Pythagorean triangles divided by 60).
The following table shows the numbers of odd terms < 10^k for k = 2, 3, 4, 5, 6 and 7. For instance, among the 16 multiples of 60 less than 10^3, the divisors of the five numbers 60, 240, 540, 780 and 960 contain 1, 3, 3, 3 and 5 Pythagorean triples respectively, and that represents 31.25% of odd numbers.
+---------------+-----------------+---------------------+----------+
| Intervals | Number of | Number of odd terms | |
| D(k) < 10^k | multiples of 60 | in D(k) | % |
| k = 2,3,...,7 | in D(k) | | |
+---------------+-----------------+---------------------+----------+
| < 10^2 | 1 | 1 | 100% |
| < 10^3 | 16 | 5 | 31.250% |
| < 10^4 | 166 | 18 | 10.843% |
| < 10^5 | 1666 | 72 | 4.321% |
| < 10^6 | 16666 | 256 | 1.536% |
| < 10^7 | 166666 | 879 | 0.527% |
|---------------+-----------------+---------------------+----------+

Examples

			a(4) = 3 because the divisors of A169823(4) = 240 are {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} with 3 Pythagorean triples: (3, 4, 5), (6, 8, 10) and (12, 16, 20). The first triple is primitive.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 60 by 60 to 5400 do :
       d:=divisors(n):n0:=nops(d):it:=0:
        for i from 1 to n0-1 do:
         for j from i+1 to n0-2 do :
          for m from i+2 to n0 do:
           if d[i]^2 + d[j]^2 = d[m]^2
            then
            it:=it+1:
            else
           fi:
          od:
         od:
        od:
        printf(`%d, `,it):
       od:
  • PARI
    ishypo(n) = setsearch(Set(factor(n)[, 1]%4), 1); \\ A009003
    a(n) = {n *= 60; my(d=divisors(n), nb=0); for (i=3, #d, if (ishypo(d[i]), for (j=2, i-1, for (k=3, j-1, if (d[j]^2 + d[k]^2 == d[i]^2, nb++););););); nb;} \\ Michel Marcus, Apr 26 2020

A234693 Primes of the form n^2 + 1 such that (n - 1)^2 + 1 and (n + 1)^2 + 1 are semiprimes.

Original entry on oeis.org

17, 101, 28901, 324901, 608401, 902501, 2016401, 5664401, 7452901, 14822501, 16974401, 18490001, 34222501, 40449601, 41731601, 46240001, 48580901, 50410001, 52417601, 76038401, 92736901, 103022501, 111936401, 121220101, 124768901, 139948901, 151290001
Offset: 1

Views

Author

Michel Lagneau, Dec 29 2013

Keywords

Comments

The corresponding n are 4, 10, 170, 570, 780, 950, 1420, 2380...
Property: n^2 + 1 = p + q - 1 and for a(n) > 17, a(n) == 1 mod 100.

Examples

			101 = 10^2 + 1 is in the sequence because 9^2 + 1 = 2*41 and 11^2 + 1 = 2*61.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 10^5 do:n1:=n^2+1:n2:=(n+1)^2+1:n3:=(n+2)^2+1: if type(n2,prime)=true and bigomega(n1)=2 and bigomega(n3)=2 then printf(`%d, `,n2):else fi:od:
  • PARI
    forstep(n=4,1e5,2,if(isprime(n^2+1) && isprime(n^2/2-n+1) && isprime(n^2/2+n+1), print1(n^2+1", "))) \\ Charles R Greathouse IV, Dec 29 2013

A261546 Numbers k such that the five numbers k^2+1, (k+1)^2+1, ..., (k+4)^2+1 are all semiprime.

Original entry on oeis.org

48, 58, 1688, 2948, 28338, 36998, 38648, 96248, 100308, 133458, 136798, 187538, 207088, 224508, 253808, 309738, 375348, 545048, 598348, 607688, 659548, 672398, 793958, 1055648, 1055688, 1140008, 1270408, 1317808, 1388398, 1399098, 1529488, 1597008, 1655338
Offset: 1

Views

Author

Michel Lagneau, Aug 24 2015

Keywords

Comments

a(n) == 8 (mod 10).
a(15017) > 10^10. - Hiroaki Yamanouchi, Oct 03 2015

Examples

			48 is in the sequence because of these five semiprimes:
48^2+1 = 2305 = 5*461;
49^2+1 = 2402 = 2*1201;
50^2+1 = 2501 = 41*61;
51^2+1 = 2602 = 2*1301;
52^2+1 = 2705 = 5*541.
		

Crossrefs

Subsequence of A085722.

Programs

  • Magma
    IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [1..3*10^5] | IsSemiprime(n^2+1) and IsSemiprime(n^2+2*n+2)and IsSemiprime(n^2+4*n+5)and IsSemiprime(n^2+6*n+10)and IsSemiprime(n^2+8*n+17)]; // Vincenzo Librandi, Aug 24 2015
  • Maple
    with(numtheory):
      n:=5:
      for k from 1 to 10^6 do:
        jj:=0:
        for m from 0 to n-1 do:
           x:=(k+m)^2+1:d0:=bigomega(x):
           if d0=2
           then
           jj:=jj+1:
           else
           fi:
         od:
            if jj=n
            then
            printf(`%d, `,k):
            else
            fi:
        od:
  • Mathematica
    PrimeFactorExponentsAdded[n_]:=Plus@@Flatten[Table[#[[2]], {1}]&/@FactorInteger[n]]; Select[Range[2 10^5], PrimeFactorExponentsAdded[#^2+1] == PrimeFactorExponentsAdded[#^2 + 2 # + 2]== PrimeFactorExponentsAdded[#^2 + 4 # + 5]== PrimeFactorExponentsAdded[#^2 + 6 # + 10]== PrimeFactorExponentsAdded[#^2 + 8 # + 17] == 2 &] (* Vincenzo Librandi, Aug 24 2015 *)
  • PARI
    has(n) = bigomega(n^2+1)==2;
    isok(n) = has(n) && has(n+1) && has(n+2) && has(n+3) && has(n+4); \\ Michel Marcus, Aug 24 2015
    
  • PARI
    a261546() = {
      nterm = 0;
      for (i = 0, 10^9,
        if (isprime(20*i*i + 32*i + 13) &&
          isprime(50*i*i + 90*i + 41) &&
          isprime(50*i*i + 110*i + 61) &&
          isprime(20*i*i + 48*i + 29) &&
          bigomega(100*i*i + 200*i + 101) == 2,
          nterm += 1;
          print(nterm, " ", 10 * i + 8);
        );
      );
    } \\ - Hiroaki Yamanouchi, Oct 03 2015
    
  • PARI
    issemi(n)=forprime(p=2,97, if(n%p==0, return(isprime(n/p)))); bigomega(n)==2
    list(lim)=my(v=List()); forstep(k=48,lim,[10,30,10], if(issemi(k^2+1) && issemi((k+1)^2+1) && issemi((k+3)^2+1) && issemi((k+4)^2+1) && issemi((k+2)^2+1), listput(v,k))); Vec(v) \\ Charles R Greathouse IV, Jul 06 2017
    

Extensions

a(18)-a(33) from Hiroaki Yamanouchi, Oct 03 2015

A333635 Numbers m such that m^2 + 1 has at most 2 prime factors.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 19, 20, 22, 24, 25, 26, 28, 29, 30, 34, 35, 36, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 58, 59, 60, 61, 62, 64, 65, 66, 69, 71, 74, 76, 78, 79, 80, 84, 85, 86, 88, 90, 92, 94, 95, 96, 100
Offset: 1

Views

Author

Bernard Schott, Mar 30 2020

Keywords

Comments

Equivalently, numbers m such that m^2 + 1 is prime or semiprime.
Henryk Iwaniec proved in 1978 that this sequence is infinite (see link). By contrast, it is not known whether there are infinitely many primes of the form m^2 + 1 (or infinitely many semiprimes of that form).
The integers that have at most 2 prime factors counted with multiplicity are called almost-primes of order 2 and they are in A037143. Here, as m^2 + 1 is not a square for m > 0, all the semiprimes of this form have two distinct prime factors (A144255), and with the primes of the form m^2 + 1 (A002496), they constitute A248742.

Examples

			10^2 + 1 = 101, which is prime, so 10 is in the sequence.
11^2 + 1 = 122 = 2 * 61, so 11 is in the sequence.
12^2 + 1 = 145 = 5 * 29, so 12 is in the sequence.
13^2 + 1 = 170 = 2 * 5 * 17, so 13 is not in the sequence.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A1.

Crossrefs

Union of A005574 and A085722.
Cf. A002496 (m^2 + 1 is prime), A005574 (corresponding m).
Cf. A144255 (m^2 + 1 is semiprime), A085722 (corresponding m).
Cf. A248742 (m^2 + 1 is prime or semiprime), this sequence (corresponding m).
Cf. A037143 (numbers with at most 2 prime factors counted with multiplicity).

Programs

  • Mathematica
    Select[Range[100], PrimeQ[(k = #^2 + 1)] || PrimeOmega[k] == 2 &]  (* Amiram Eldar, Mar 30 2020 *)
    Select[Range[100],PrimeOmega[#^2+1]<3&] (* Harvey P. Dale, Aug 08 2025 *)

A360739 Semiprimes of the form k^2 + 2.

Original entry on oeis.org

6, 38, 51, 123, 146, 291, 326, 731, 843, 1227, 1371, 1766, 1851, 2306, 2603, 2811, 2918, 3027, 3602, 4227, 4358, 4763, 5186, 5331, 5627, 6243, 6891, 7058, 7571, 8102, 8651, 9411, 13227, 14163, 15627, 17426, 17691, 18227, 18771, 19883, 20738, 22502, 23411, 24027
Offset: 1

Views

Author

Elmo R. Oliveira, Feb 18 2023

Keywords

Comments

A242330 gives the corresponding values of k.

Examples

			123 is a term because 11^2 + 2 = 123 = 3*41.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 200]^2 + 2, PrimeOmega[#] == 2 &] (* Amiram Eldar, Feb 18 2023 *)

Formula

a(n) = A242330(n)^2 + 2.

A360740 Semiprimes of the form k^2 + 3.

Original entry on oeis.org

4, 39, 259, 327, 403, 579, 679, 1027, 1159, 1299, 1603, 1939, 2119, 2307, 3139, 3603, 4359, 4627, 6087, 6403, 7747, 9607, 10003, 10407, 10819, 11667, 13459, 13927, 14403, 16387, 18499, 21907, 23107, 26899, 28903, 30279, 30979, 33127, 35347, 36103, 36867, 38419
Offset: 1

Views

Author

Elmo R. Oliveira, Feb 18 2023

Keywords

Comments

A242331 gives the corresponding values of k.

Examples

			259 is a term because 16^2 + 3 = 259 = 7*37.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 200]^2 + 3, PrimeOmega[#] == 2 &] (* Amiram Eldar, Feb 18 2023 *)

Formula

a(n) = A242331(n)^2 + 3.

A360741 Semiprimes of the form k^2 + 4.

Original entry on oeis.org

4, 85, 365, 445, 533, 629, 965, 1685, 1853, 2605, 2813, 3029, 3973, 4765, 5045, 5629, 5933, 6245, 6893, 8285, 8653, 11029, 11453, 11885, 12773, 14165, 15133, 16645, 17165, 17693, 20453, 21029, 22205, 22805, 23413, 24653, 27229, 29245, 29933, 30629, 32765, 34229
Offset: 1

Views

Author

Elmo R. Oliveira, Feb 18 2023

Keywords

Comments

A242332 gives the corresponding values of k.
Except for 4, all terms == 5 (mod 8). - Robert Israel, Feb 18 2023

Examples

			85 is a term because 9^2 + 4 = 85 = 5*17.
		

Crossrefs

Programs

  • Maple
    select(t -> numtheory:-bigomega(t)=2, [seq(i^2+4,i=0..1000)]); # Robert Israel, Feb 18 2023
  • Mathematica
    Select[Range[0, 200]^2 + 4, PrimeOmega[#] == 2 &] (* Amiram Eldar, Feb 18 2023 *)

Formula

a(n) = A242332(n)^2 + 4.

A361696 Semiprimes of the form k^2 + 5.

Original entry on oeis.org

6, 9, 14, 21, 69, 86, 201, 329, 446, 489, 581, 681, 734, 789, 905, 1094, 1769, 1941, 2606, 2921, 3254, 3369, 3849, 3974, 4101, 4629, 4766, 6729, 7061, 7401, 8105, 8654, 9609, 9806, 10409, 10821, 11669, 12326, 13929, 17429, 17961, 19049, 20741, 23109, 23721, 24341, 27561, 30281, 31334, 32405
Offset: 1

Views

Author

Elmo R. Oliveira, Mar 20 2023

Keywords

Examples

			69 is a term because 8^2 + 5 = 69 = 3*23.
		

Crossrefs

Intersection of A117951 and A001358.

Programs

  • Mathematica
    Select[Range[200]^2 + 5, PrimeOmega[#] == 2 &] (* Paolo Xausa, Aug 21 2025 *)
  • PARI
    isok(k) = issquare(k-5) && (bigomega(k)==2); \\ Michel Marcus, Mar 27 2023

Formula

a(n) = A242333(n)^2 + 5.

A258780 a(n) is the least k such that k^2 + 1 is a semiprime p*q, p < q, and (q - p)/2^n is prime.

Original entry on oeis.org

8, 12, 140, 64, 2236, 196, 1300, 1600, 6256, 5084, 248756, 246196, 484400, 36680, 887884, 821836, 1559116, 104120, 126072244, 9586736, 4156840, 542759984, 1017981724, 2744780140, 405793096, 148647496, 1671024916
Offset: 2

Views

Author

Michel Lagneau, Jun 10 2015

Keywords

Comments

The corresponding primes are 2, 3, 71, 7, 1069, 7, 5, 5, 59, 2, 368471, 180463, 12421, 2, 29, 125683, 226169, 5, 369704891, 197, 5, 263, 7444559, 239621423, 594271, 2, 474359, ...
All terms are even, in order for k^2+1 to be odd. Otherwise, with k^2+1 being even, p-q would be odd and hence not a multiple of 2^n. - Michel Marcus, Apr 13 2019

Examples

			a(2)=8 because 8^2+1 = 5*13 and (13-5)/2^2 = 2 is prime. The number 8 is the first term of the sequence 8, 22, 34, 46, 50, 58, ...
a(3)=12 because 12^2+1 = 5*29 and (29-5)/2^3 = 3 is prime. The number 12 is the first term of the sequence 12, 28, 44, 52, 76, 80, ...
a(4)=140 because 140^2+1 = 17*1153 and (1153-17)/2^4 = 71 is prime. The number 140 is the first term of the sequence 140, 296, 404, 604, ...
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[k=2;While[!(Plus@@Last/@FactorInteger[k^2+1]==2&&PrimeQ[(FactorInteger[k^2+1][[-1,1]]-FactorInteger[k^2+1][[1,1]])/2^n]),k=k+2];Print[n," ",k],{n,2,19}];lst
  • PARI
    isok(k, n) = my(kk=k^2+1, f=factor(kk)[,1]~); (bigomega(kk) == 2) && (#f == 2) && (p=f[1]) && (q=f[2]) && (qq=(q-p)/2^n) && !frac(qq) && isprime(qq);
    a(n) = my(k=2); while (!isok(k,n), k+=2); k; \\ Michel Marcus, Apr 13 2019

Extensions

Name edited by Jon E. Schoenfield, Sep 12 2017
a(20)-a(22) from Daniel Suteu, Apr 13 2019
a(23)-a(28) from Daniel Suteu, Nov 09 2019

A348594 Numbers m such that m^2 + 1 = p*q with p, q primes and m = (p + q)/2 - 1.

Original entry on oeis.org

8, 50, 1250, 1800, 2450, 9800, 14450, 20000, 24200, 101250, 105800, 135200, 162450, 168200, 204800, 304200, 336200, 451250, 480200, 490050, 530450, 696200, 924800, 966050, 1008200, 1125000, 1155200, 1428050, 1805000, 2332800, 2420000, 2576450, 2761250, 2832200
Offset: 1

Views

Author

Michel Lagneau, Jan 26 2022

Keywords

Comments

Subsequence of A085722.
The corresponding pairs (p, q) of the sequence are (5, 13), (41, 61), (1201, 1301), (1741, 1861), (2381, 2521), (9661, 9941), (14281, 14621), (19801, 20201), (23981, 24421), (100801, 101701), ...
Property:
a(n) = 2* A109306(n)^2 and a(n) == 0 (mod 50) for n > 1. Proof:
From the relations:
(1) m^2 + 1 = p*q
(2) (p + q)/2 = m + 1
We obtain:
(3) p = m + 1 - sqrt(8*m)/2
(4) q = m + 1 + sqrt(8*m)/2
with m = 2*k^2 we obtain:
(5) p = k^2 + (k-1)^2
(6) q = k^2 + (k+1)^2
For n > 1, A109306(n) == 0 (mod 5) => 2*A109306(n)^2 == 0 (mod 50).

Examples

			50 = 2*5^2 is in the sequence because 50^2 + 1 = 41*61 with 50 = (41 + 61)/2 - 1.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=250:printf(`%d, `,8):
    for k from 0 to nn do:
    n:=50*k^2:d:=factorset(n^2+1):
      if bigomega(n^2+1)=2 and (d[1]+d[2])/2 - 1 = n
       then
        printf(`%d, `,n):
        else
      fi:
    od:
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n^2 + 1]}, f[[;; , 2]] == {1, 1} && f[[1, 1]] + f[[2, 1]] == 2*n + 2]; Select[Range[3*10^5], q] (* Amiram Eldar, Jan 26 2022 *)
  • PARI
    isok(m) = my(x); if (bigomega(x=m^2+1)==2, my(f=factor(x)); (f[1,1]+f[2,1] == 2*(m+1))); \\ Michel Marcus, Jan 26 2022
Previous Showing 11-20 of 20 results.