cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A232737 Decimal expansion of the real part of I^(1/8), or cos(Pi/16).

Original entry on oeis.org

9, 8, 0, 7, 8, 5, 2, 8, 0, 4, 0, 3, 2, 3, 0, 4, 4, 9, 1, 2, 6, 1, 8, 2, 2, 3, 6, 1, 3, 4, 2, 3, 9, 0, 3, 6, 9, 7, 3, 9, 3, 3, 7, 3, 0, 8, 9, 3, 3, 3, 6, 0, 9, 5, 0, 0, 2, 9, 1, 6, 0, 8, 8, 5, 4, 5, 3, 0, 6, 5, 1, 3, 5, 4, 9, 6, 0, 5, 0, 6, 3, 9, 1, 5, 0, 6, 4, 9, 8, 5, 8, 5, 3, 3, 0, 0, 7, 6, 3, 2, 5, 9, 8, 9, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232738.

Examples

			0.9807852804032304491261822361342390369739337308933360950029160885453...
		

Crossrefs

Cf. A232738 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232735 (real(I^(1/7))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
Root of 128*x^8 -256*x^6 +160*x^4 -32*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
2*this^2 -1 = A144981. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/8,1/8;1/2;1/2). - R. J. Mathar, Aug 31 2025

A144982 Decimal expansion of cos(Pi/24) = cos(7.5 degrees).

Original entry on oeis.org

9, 9, 1, 4, 4, 4, 8, 6, 1, 3, 7, 3, 8, 1, 0, 4, 1, 1, 1, 4, 4, 5, 5, 7, 5, 2, 6, 9, 2, 8, 5, 6, 2, 8, 7, 1, 2, 7, 7, 7, 3, 8, 2, 7, 4, 4, 4, 8, 1, 0, 2, 2, 7, 1, 4, 5, 8, 7, 7, 4, 6, 0, 3, 5, 2, 8, 9, 2, 2, 0, 6, 8, 4, 0, 5, 0, 8, 2, 5, 3, 1, 7, 6, 3, 2, 6, 5, 4, 3, 3, 4, 5, 3, 2, 7, 7, 3, 9, 7, 3, 5, 7, 3, 7, 8
Offset: 0

Views

Author

R. J. Mathar, Sep 28 2008

Keywords

Comments

Octic number of denominator 2 and minimal polynomial 256x^8 - 512x^6 + 320x^4 - 64x^2 + 1. - Charles R Greathouse IV, May 13 2019

Examples

			Equals 0.9914448613738104111445575269285628712777382744...
		

Programs

Formula

sqrt(2*sqrt(2)+sqrt(3)+1)/2^(5/4) =sqrt(A010466+A090388)/A011027.
Equals 2F1(9/16,7/16;1/2;3/4) / 2 . - R. J. Mathar, Oct 27 2008
4*this^3 -3*this = A144981. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/16,1/16;1/2;3/4) = 2F1(-1/12,1/12;1/2;1/2). - R. J. Mathar, Aug 31 2025

A386241 Decimal expansion of sqrt(5)*sin(Pi/8).

Original entry on oeis.org

8, 5, 5, 7, 0, 6, 1, 6, 8, 6, 3, 1, 2, 8, 3, 8, 4, 7, 7, 7, 4, 8, 1, 8, 0, 7, 1, 8, 2, 4, 6, 8, 3, 7, 0, 7, 3, 0, 1, 7, 0, 4, 1, 9, 3, 5, 9, 7, 3, 3, 4, 5, 4, 8, 0, 8, 7, 2, 2, 4, 2, 2, 8, 6, 4, 8, 0, 0, 9, 5, 0, 6, 5, 9, 8, 8, 2, 5, 8, 7, 5, 5, 4, 5, 0, 0, 9
Offset: 0

Views

Author

Hugo Pfoertner, Jul 18 2025

Keywords

Comments

Upper bound of the wobbling distance S of two rotated square lattices. See A307110 and A307731 for the special case of rotation angle Pi/4. According to Jan Fricke (1999), the angle Pi/4 is the most unfavorable case, i.e., smaller bounds can be found for all other angles.

Examples

			0.8557061686312838477748180718246837073...
		

Crossrefs

Programs

Formula

The minimal polynomial is 8*x^4 - 40*x^2 + 25. - Joerg Arndt, Aug 02 2025

A206161 Decimal expansion of the Fresnel integral int_{x=0..infinity} cos(x^4) dx.

Original entry on oeis.org

8, 3, 7, 4, 0, 6, 6, 9, 6, 7, 6, 9, 0, 8, 6, 4, 8, 3, 0, 8, 3, 6, 0, 2, 7, 2, 2, 1, 8, 0, 8, 3, 2, 2, 6, 1, 3, 7, 9, 0, 6, 1, 6, 6, 1, 2, 9, 9, 0, 1, 0, 8, 4, 4, 3, 4, 1, 8, 9, 8, 0, 0, 2, 0, 8, 6, 0, 1, 9, 0, 3, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 10 2013

Keywords

Examples

			0.83740669676908648308360272218083226...
		

Crossrefs

Cf. A204067.

Programs

  • Maple
    evalf(Pi*cos(Pi/8)/GAMMA(3/4)/2^(3/2)) ;
  • Mathematica
    RealDigits[ Sqrt[2 + Sqrt[2]]*Gamma[1/4]/8, 10, 72] // First (* Jean-François Alcover, Feb 20 2013 *)

Formula

Equals A093954 * A144981 / A068465 .

A343056 Decimal expansion of the real part of i^(1/16), or cos(Pi/32).

Original entry on oeis.org

9, 9, 5, 1, 8, 4, 7, 2, 6, 6, 7, 2, 1, 9, 6, 8, 8, 6, 2, 4, 4, 8, 3, 6, 9, 5, 3, 1, 0, 9, 4, 7, 9, 9, 2, 1, 5, 7, 5, 4, 7, 4, 8, 6, 8, 7, 2, 9, 8, 5, 7, 0, 6, 1, 8, 3, 3, 6, 1, 2, 9, 6, 5, 7, 8, 4, 8, 9, 0, 1, 6, 6, 8, 9, 4, 5, 8, 6, 5, 3, 7, 9, 7, 2, 5, 2, 9, 0, 8, 4, 2, 6, 9, 6, 4, 8, 3, 9, 0, 2, 8, 7, 7, 2, 4, 4, 9, 3, 1, 1, 8, 2, 9
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.9951847266721968862448369...
		

Crossrefs

cos(Pi/m): A010503 (m=4), A019863 (m=5), A010527 (m=6), A073052 (m=7), A144981 (m=8), A019879 (m=9), A019881 (m=10), A019884 (m=12), A232735 (m=14), A019887 (m=15), A232737 (m=16), A210649 (m=17), A019889 (m=18), A019890 (m=20), A144982 (m=24), A019893 (m=30). this sequence (m=32), A019894 (m=36).

Programs

  • Magma
    R:= RealField(127); Cos(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Cos[Pi/32], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    real(I^(1/16))
    
  • PARI
    cos(Pi/32)
    
  • PARI
    sqrt(2+sqrt(2+sqrt(2+sqrt(2))))/2
    
  • SageMath
    numerical_approx(cos(pi/32), digits=122) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2+sqrt(2)))).
Satisfies 32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +84480*x^8 -21504*x^6 +2688*x^4 -128*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/16,1/16;1/2;1/2). - R. J. Mathar, Aug 31 2025

A343060 Decimal expansion of tan(Pi/16).

Original entry on oeis.org

1, 9, 8, 9, 1, 2, 3, 6, 7, 3, 7, 9, 6, 5, 8, 0, 0, 6, 9, 1, 1, 5, 9, 7, 6, 2, 2, 6, 4, 4, 6, 7, 6, 2, 2, 8, 5, 9, 7, 8, 5, 0, 5, 0, 1, 3, 2, 1, 5, 9, 0, 9, 8, 1, 9, 2, 1, 1, 1, 6, 9, 9, 5, 8, 2, 5, 4, 2, 9, 6, 0, 4, 4, 6, 0, 2, 7, 7, 0, 6, 3, 0, 5, 3, 3, 1, 9, 9, 0, 6, 0, 5, 7, 6, 1, 4, 7, 1, 3, 7, 5, 7, 7, 6, 0, 7, 8, 2, 6, 5, 6, 5, 7, 0, 5, 8
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

Smallest positive of the 4 real-valued roots of x^4+4*x^3-6*x^2-4*x+1=0 (Other: tan(5*Pi/16) = 1.49660.., -tan(7*Pi/16) = -5.027339.., -tan(3*Pi/16)= -0.6681786...) - R. J. Mathar, Sep 06 2025

Examples

			0.19891236737965800691159762264...
		

Crossrefs

Cf. A232738 (sin(Pi/16)), A232737 (cos(Pi/16)), A343057 (tan(Pi/32)).

Programs

  • Mathematica
    RealDigits[Tan[Pi/16], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/16)
    
  • PARI
    sqrt((2-sqrt(2+sqrt(2)))/(2+sqrt(2+sqrt(2))))
    
  • PARI
    sqrt(4+2*sqrt(2))-sqrt(2)-1

Formula

Equals sqrt( (2-sqrt(2+sqrt(2)))/(2+sqrt(2+sqrt(2))) ).
Equals sqrt(4+2*sqrt(2))-sqrt(2)-1.
Equals A182168/(1+A144981). - R. J. Mathar, Sep 06 2025
Previous Showing 11-16 of 16 results.