cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A146327 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 2.

Original entry on oeis.org

2, 3, 10, 11, 12, 15, 21, 26, 27, 30, 35, 45, 50, 51, 56, 63, 77, 82, 83, 84, 87, 90, 93, 99, 117, 122, 123, 132, 143, 165, 170, 171, 182, 195, 221, 226, 227, 228, 230, 231, 235, 237, 240, 245, 255, 285, 290, 291, 306, 323, 357, 362, 363, 380, 399, 437, 442, 443
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A056899, primes of the form k^2 + 2.

Examples

			a(1) = 2 because continued fraction of (1 + sqrt(2))/2 = 1, 4, 1, 4, 1, 4, 1, ... has repeating part (1,4), period 2.
		

Crossrefs

Programs

  • Maple
    A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146327 := proc(n) RETURN(A146326(n) = 2) ; end: for n from 2 to 450 do if isA146327(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    Select[Range[1000], 2 == Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] &]

Extensions

226, 227, 290, 291 added by R. J. Mathar, Sep 06 2009

A146328 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 3.

Original entry on oeis.org

17, 37, 61, 65, 101, 145, 185, 197, 257, 317, 325, 401, 461, 485, 557, 577, 677, 773, 785, 901, 985, 1025, 1129, 1157, 1297, 1429, 1445, 1601, 1765, 1877, 1901, 1937, 2117, 2285, 2305, 2501, 2705, 2873, 2917, 3077, 3137, 3281, 3293, 3341, 3365, 3601, 3845, 4045, 4097, 4357, 4597, 4625, 4901
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146348.

Examples

			a(1) = 3 because continued fraction of (1+sqrt(17))/2 = 2, 1, 1, 3, 1, 1, 3, ... has period (1,1,3) length 3.
		

Crossrefs

Programs

  • Maple
    A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146328 := proc(n) RETURN(A146326(n) = 3) ; end: for n from 2 to 1801 do if isA146328(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    okQ[n_] := Module[{cf = ContinuedFraction[(1 + Sqrt[n])/2]}, Length[cf] > 1 && Length[cf[[2]]] == 3]; Select[Range[5000], okQ]

Extensions

803 removed by R. J. Mathar, Sep 06 2009
Extended by T. D. Noe, Mar 09 2011

A146330 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 5.

Original entry on oeis.org

41, 149, 157, 181, 269, 397, 425, 493, 565, 697, 761, 941, 1013, 1037, 1325, 1565, 1781, 1825, 2081, 2153, 2165, 2173, 2465, 2477, 2693, 2725, 3181, 3221, 3533, 3869, 4253, 4409, 5165, 5213, 5273, 5297, 5741, 5837, 6485, 6757, 6949, 7045, 7325, 7465, 8021, 8069
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146350.

Examples

			a(1) = 41 because continued fraction of (1+sqrt(41))/2 = 3, 1, 2, 2, 1, 5, 1, 2, 2, 1, 5, 1, 2, 2, 1, 5, 1, 2, ... has period (1,2,2,1,5) length 5.
		

Crossrefs

Programs

  • Maple
    isA146330 := proc(n) RETURN(A146326(n) = 5) ; end:
    for n from 2 to 2000 do if isA146330(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    Select[Range[10^4], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 5 &]  (* Amiram Eldar, Mar 31 2020 *)

Extensions

259 and 1026 removed by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 31 2020

A146331 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 6.

Original entry on oeis.org

18, 19, 22, 38, 39, 44, 54, 57, 58, 59, 66, 68, 70, 74, 86, 102, 105, 107, 111, 112, 114, 115, 130, 131, 146, 147, 148, 150, 159, 164, 175, 178, 183, 186, 187, 198, 203, 253, 258, 260, 264, 267, 273, 275, 278, 294, 303, 308, 309, 326, 327, 330, 333, 341, 346
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146351.

Examples

			a(2) = 19 because continued fraction of (1+sqrt(19))/2 = 2, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1 ... has period (1, 2, 8, 2, 1, 3) length 6.
		

Crossrefs

Programs

  • Maple
    A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146331 := proc(n) RETURN(A146326(n) = 6) ; end: for n from 2 to 380 do if isA146331(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    cf6Q[n_]:=Module[{c=(1+Sqrt[n])/2},!IntegerQ[c]&&Length[ContinuedFraction[ c][[2]]]==6]; Select[Range[400],cf6Q] (* Harvey P. Dale, May 30 2012 *)

Extensions

39, 68, 150, 203, etc. added by R. J. Mathar, Sep 06 2009

A146332 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 7.

Original entry on oeis.org

89, 109, 113, 137, 373, 389, 509, 653, 685, 797, 853, 925, 949, 997, 1009, 1105, 1145, 1165, 1261, 1493, 1997, 2309, 2621, 2677, 2885, 2941, 3133, 3277, 3445, 3653, 3797, 4325, 4505, 4745, 4825, 4973, 5353, 5429, 5765, 6305, 6437, 6845, 7085, 7373, 7817, 7873
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146352.

Examples

			a(4) = 137 because continued fraction of (1+sqrt(137))/2 = 6, 2, 1, 5, 5, 1, 2, 11, 2, 1, 5, 5, 1, 2, 11, 2, 1, 5, 5, 1, 2, 11 ... has period (2, 1, 5, 5, 1, 2, 11) length 7.
		

Crossrefs

Programs

  • Maple
    A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146332 := proc(n) RETURN(A146326(n) = 7) ; end: for n from 2 to 1100 do if isA146332(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    Select[Range[10^4], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 7 &]  (* Amiram Eldar, Mar 31 2020 *)

Extensions

997 added by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 31 2020

A146333 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 8.

Original entry on oeis.org

31, 40, 46, 71, 76, 88, 91, 92, 96, 104, 108, 152, 153, 155, 176, 188, 192, 200, 206, 207, 234, 238, 261, 266, 276, 279, 280, 282, 320, 328, 335, 336, 348, 366, 378, 383, 386, 392, 408, 414, 450, 476, 477, 480, 488, 501, 503, 504, 505, 540, 542, 555, 558, 581
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146353.

Examples

			a(1) = 31 because continued fraction of (1+sqrt(31))/2 = 3, 3, 1, 1, 10, 1, 1, 3, 5, 3, 1, 1, 10, 1, 1, 3, 5, 3, 1, 1, 10, 1, ... has period (3, 1, 1, 10, 1, 1, 3, 5) length 8.
		

Crossrefs

Programs

  • Maple
    A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146333 := proc(n) RETURN(A146326(n) = 8) ; end: for n from 2 to 700 do if isA146333(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    cf8Q[n_]:=Module[{sqrt=Sqrt[n]},!IntegerQ[sqrt]&&Length[ ContinuedFraction[ (1+sqrt)/2][[2]]]==8]; Select[Range[600],cf8Q] (* Harvey P. Dale, Sep 06 2012 *)

Extensions

155 and 279 etc. added, 311 etc. removed by R. J. Mathar, Sep 06 2009

A146336 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 12.

Original entry on oeis.org

94, 103, 124, 127, 128, 158, 160, 177, 190, 204, 208, 209, 216, 236, 239, 247, 263, 295, 296, 302, 316, 332, 351, 364, 376, 384, 385, 415, 423, 426, 432, 460, 464, 479, 492, 535, 544, 585, 606, 608, 609, 636, 639, 666, 668, 684, 696, 706, 734, 736, 744, 750
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146357.

Examples

			a(2) = 103 because continued fraction of (1+sqrt(103))/2 = 15, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2 ... has period (1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9) length 12.
		

Crossrefs

Programs

  • Mathematica
    cf12Q[n_]:=!OddQ[Sqrt[n]]&&Length[ContinuedFraction[(1+Sqrt[n])/2][[2]]]==12; Select[Range[800],cf12Q] (* Harvey P. Dale, Oct 15 2011 *)

A146337 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 14.

Original entry on oeis.org

118, 154, 179, 201, 212, 244, 251, 262, 286, 292, 307, 340, 347, 388, 403, 418, 422, 430, 467, 471, 474, 494, 497, 500, 519, 543, 548, 566, 587, 594, 598, 670, 683, 687, 692, 698, 699, 703, 713, 722, 742, 745, 754, 831, 833, 847, 873, 879, 932, 939, 945
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146359.

Examples

			a(1) = 421 because continued fraction of (1+sqrt(421))/2 = 17, 5, 3, 1, 1, 1, 2, 26, 2, 1, 1, 1, 3, 5, 13, 5, 3, 1, 1, 1, 2, 26, 2, 1, 1, 1, 3, 5, 13, 5, 3, 1, 1, 1, 2, 26... has period (5, 3, 1, 1, 1, 2, 26, 2, 1, 1, 1, 3, 5, 13) length 14.
		

Crossrefs

Programs

  • Maple
    A := proc(n) option remember ; local c; try c := numtheory[cfrac](1/2+sqrt(n)/2,'periodic','quotients') ; RETURN(nops(c[2]) ); catch: RETURN(-1) end try ; end: isA146337 := proc(n) if A(n) = 14 then RETURN(true); else RETURN(false); fi; end: for k from 1 do if isA146337(k) then printf("%d, ",k) ; fi; od: # R. J. Mathar, Nov 08 2008
  • Mathematica
    cf14Q[n_]:=Module[{s=(1+Sqrt[n])/2},!IntegerQ[s]&&Length[ ContinuedFraction[ s][[2]]] == 14]; Select[Range[1000],cf14Q] (* Harvey P. Dale, Oct 15 2015 *)

Extensions

More terms from R. J. Mathar, Nov 08 2008

A146338 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 15.

Original entry on oeis.org

193, 281, 481, 1417, 1861, 1933, 2089, 2141, 2197, 2437, 2741, 2837, 3037, 3065, 3121, 3413, 3589, 3625, 3785, 3925, 3977, 4001, 4637, 4777, 4877, 5317, 5821, 5941, 6025, 6641, 6653, 6749, 7673, 8117, 8177, 8345, 10069, 10273, 10457, 11197, 11281, 11549, 11821
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146360.

Examples

			a(1) = 193 because continued fraction of (1+sqrt(193))/2 = 7, 2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13, 2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13, ... has period (2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13) length 15.
		

Crossrefs

Programs

  • Maple
    A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end:
    isA146338 := proc(n) RETURN(A146326(n) = 15) ; end:
    for n from 2 to 4000 do if isA146338(n) then printf("%d,\n",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    Select[Range[10^4], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 15 &]  (* Amiram Eldar, Mar 31 2020 *)

Extensions

Extended beyond 3 terms by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 31 2020

A146339 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 16.

Original entry on oeis.org

172, 191, 217, 232, 249, 310, 311, 329, 343, 344, 355, 369, 391, 393, 416, 428, 431, 446, 496, 513, 520, 524, 536, 537, 550, 559, 589, 647, 655, 679, 682, 686, 700, 704, 748, 760, 768, 775, 802, 816, 848, 851, 872, 927, 995, 996, 1036, 1058, 1079, 1080, 1120, 1136
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146361.

Examples

			a(1) = 191 because continued fraction of (1+sqrt(191))/2 = 7, 2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1, 26... has period (2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13) length 16.
		

Crossrefs

Programs

  • Maple
    A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end:
    isA146339 := proc(n) RETURN(A146326(n) = 16) ; end:
    for n from 2 to 1000 do if isA146339(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    Select[Range[1000], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 16 &]  (* Amiram Eldar, Mar 31 2020 *)

Extensions

311 inserted, sequence extended by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 31 2020
Previous Showing 11-20 of 39 results. Next