A146331
Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 6.
Original entry on oeis.org
18, 19, 22, 38, 39, 44, 54, 57, 58, 59, 66, 68, 70, 74, 86, 102, 105, 107, 111, 112, 114, 115, 130, 131, 146, 147, 148, 150, 159, 164, 175, 178, 183, 186, 187, 198, 203, 253, 258, 260, 264, 267, 273, 275, 278, 294, 303, 308, 309, 326, 327, 330, 333, 341, 346
Offset: 1
a(2) = 19 because continued fraction of (1+sqrt(19))/2 = 2, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1 ... has period (1, 2, 8, 2, 1, 3) length 6.
-
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146331 := proc(n) RETURN(A146326(n) = 6) ; end: for n from 2 to 380 do if isA146331(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
cf6Q[n_]:=Module[{c=(1+Sqrt[n])/2},!IntegerQ[c]&&Length[ContinuedFraction[ c][[2]]]==6]; Select[Range[400],cf6Q] (* Harvey P. Dale, May 30 2012 *)
A146332
Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 7.
Original entry on oeis.org
89, 109, 113, 137, 373, 389, 509, 653, 685, 797, 853, 925, 949, 997, 1009, 1105, 1145, 1165, 1261, 1493, 1997, 2309, 2621, 2677, 2885, 2941, 3133, 3277, 3445, 3653, 3797, 4325, 4505, 4745, 4825, 4973, 5353, 5429, 5765, 6305, 6437, 6845, 7085, 7373, 7817, 7873
Offset: 1
a(4) = 137 because continued fraction of (1+sqrt(137))/2 = 6, 2, 1, 5, 5, 1, 2, 11, 2, 1, 5, 5, 1, 2, 11, 2, 1, 5, 5, 1, 2, 11 ... has period (2, 1, 5, 5, 1, 2, 11) length 7.
-
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146332 := proc(n) RETURN(A146326(n) = 7) ; end: for n from 2 to 1100 do if isA146332(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
Select[Range[10^4], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 7 &] (* Amiram Eldar, Mar 31 2020 *)
A146333
Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 8.
Original entry on oeis.org
31, 40, 46, 71, 76, 88, 91, 92, 96, 104, 108, 152, 153, 155, 176, 188, 192, 200, 206, 207, 234, 238, 261, 266, 276, 279, 280, 282, 320, 328, 335, 336, 348, 366, 378, 383, 386, 392, 408, 414, 450, 476, 477, 480, 488, 501, 503, 504, 505, 540, 542, 555, 558, 581
Offset: 1
a(1) = 31 because continued fraction of (1+sqrt(31))/2 = 3, 3, 1, 1, 10, 1, 1, 3, 5, 3, 1, 1, 10, 1, 1, 3, 5, 3, 1, 1, 10, 1, ... has period (3, 1, 1, 10, 1, 1, 3, 5) length 8.
-
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146333 := proc(n) RETURN(A146326(n) = 8) ; end: for n from 2 to 700 do if isA146333(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
cf8Q[n_]:=Module[{sqrt=Sqrt[n]},!IntegerQ[sqrt]&&Length[ ContinuedFraction[ (1+sqrt)/2][[2]]]==8]; Select[Range[600],cf8Q] (* Harvey P. Dale, Sep 06 2012 *)
155 and 279 etc. added, 311 etc. removed by
R. J. Mathar, Sep 06 2009
A146336
Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 12.
Original entry on oeis.org
94, 103, 124, 127, 128, 158, 160, 177, 190, 204, 208, 209, 216, 236, 239, 247, 263, 295, 296, 302, 316, 332, 351, 364, 376, 384, 385, 415, 423, 426, 432, 460, 464, 479, 492, 535, 544, 585, 606, 608, 609, 636, 639, 666, 668, 684, 696, 706, 734, 736, 744, 750
Offset: 1
a(2) = 103 because continued fraction of (1+sqrt(103))/2 = 15, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20, 6, 1, 2 ... has period (1, 1, 2, 1, 6, 20, 6, 1, 2, 1, 1, 9) length 12.
A146337
Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 14.
Original entry on oeis.org
118, 154, 179, 201, 212, 244, 251, 262, 286, 292, 307, 340, 347, 388, 403, 418, 422, 430, 467, 471, 474, 494, 497, 500, 519, 543, 548, 566, 587, 594, 598, 670, 683, 687, 692, 698, 699, 703, 713, 722, 742, 745, 754, 831, 833, 847, 873, 879, 932, 939, 945
Offset: 1
a(1) = 421 because continued fraction of (1+sqrt(421))/2 = 17, 5, 3, 1, 1, 1, 2, 26, 2, 1, 1, 1, 3, 5, 13, 5, 3, 1, 1, 1, 2, 26, 2, 1, 1, 1, 3, 5, 13, 5, 3, 1, 1, 1, 2, 26... has period (5, 3, 1, 1, 1, 2, 26, 2, 1, 1, 1, 3, 5, 13) length 14.
-
A := proc(n) option remember ; local c; try c := numtheory[cfrac](1/2+sqrt(n)/2,'periodic','quotients') ; RETURN(nops(c[2]) ); catch: RETURN(-1) end try ; end: isA146337 := proc(n) if A(n) = 14 then RETURN(true); else RETURN(false); fi; end: for k from 1 do if isA146337(k) then printf("%d, ",k) ; fi; od: # R. J. Mathar, Nov 08 2008
-
cf14Q[n_]:=Module[{s=(1+Sqrt[n])/2},!IntegerQ[s]&&Length[ ContinuedFraction[ s][[2]]] == 14]; Select[Range[1000],cf14Q] (* Harvey P. Dale, Oct 15 2015 *)
A146338
Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 15.
Original entry on oeis.org
193, 281, 481, 1417, 1861, 1933, 2089, 2141, 2197, 2437, 2741, 2837, 3037, 3065, 3121, 3413, 3589, 3625, 3785, 3925, 3977, 4001, 4637, 4777, 4877, 5317, 5821, 5941, 6025, 6641, 6653, 6749, 7673, 8117, 8177, 8345, 10069, 10273, 10457, 11197, 11281, 11549, 11821
Offset: 1
a(1) = 193 because continued fraction of (1+sqrt(193))/2 = 7, 2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13, 2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13, ... has period (2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13) length 15.
-
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end:
isA146338 := proc(n) RETURN(A146326(n) = 15) ; end:
for n from 2 to 4000 do if isA146338(n) then printf("%d,\n",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
Select[Range[10^4], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 15 &] (* Amiram Eldar, Mar 31 2020 *)
A146339
Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 16.
Original entry on oeis.org
172, 191, 217, 232, 249, 310, 311, 329, 343, 344, 355, 369, 391, 393, 416, 428, 431, 446, 496, 513, 520, 524, 536, 537, 550, 559, 589, 647, 655, 679, 682, 686, 700, 704, 748, 760, 768, 775, 802, 816, 848, 851, 872, 927, 995, 996, 1036, 1058, 1079, 1080, 1120, 1136
Offset: 1
a(1) = 191 because continued fraction of (1+sqrt(191))/2 = 7, 2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1, 26... has period (2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13) length 16.
-
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end:
isA146339 := proc(n) RETURN(A146326(n) = 16) ; end:
for n from 2 to 1000 do if isA146339(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
Select[Range[1000], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 16 &] (* Amiram Eldar, Mar 31 2020 *)
311 inserted, sequence extended by
R. J. Mathar, Sep 06 2009
A146340
Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 17.
Original entry on oeis.org
521, 617, 709, 1433, 1597, 2549, 2909, 2965, 3161, 3581, 3821, 4013, 4285, 4649, 5501, 5585, 5693, 5813, 6197, 6409, 7825, 7853, 8093, 8125, 8573, 8917, 9281, 9665, 9677, 9925, 10265, 10597, 10973, 11273, 12085, 12805, 13061, 13109, 13613, 13957, 14677
Offset: 1
a(1) = 521 because continued fraction of (1+sqrt(521))/2 = 11, 1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21, 1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21, 1, 10, 2, 5, ... has period (1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21) length 17.
-
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146340 := proc(n) RETURN(A146326(n) = 17) ; end: for n from 2 do if isA146340(n) then printf("%d,\n",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
cf17Q[n_]:=Module[{s=(1+Sqrt[n])/2},If[IntegerQ[s], 1,Length[ ContinuedFraction[ s][[2]]]]==17]; Select[Range[5000],cf17Q] (* Harvey P. Dale, Dec 20 2017 *)
998 and 1006 removed, sequence extended by
R. J. Mathar, Sep 06 2009
A146343
a(n) = smallest number k such that the continued fraction of (1 + sqrt(k))/2 has period n.
Original entry on oeis.org
5, 2, 17, 6, 41, 18, 89, 31, 73, 43, 265, 94, 421, 118, 193, 172, 521, 106, 241, 151, 337, 489, 433, 268, 929, 211, 409, 334, 673, 379, 937, 463, 601, 331, 769, 721, 2297, 619, 1033, 718, 1777, 394, 1753, 604, 1993, 634, 1249, 526, 3649, 694
Offset: 1
-
A := proc(n) local c; try c := numtheory[cfrac](1/2+sqrt(n)/2,'periodic','quotients') ; RETURN(nops(c[2]) ); catch: RETURN(-1) end try ; end: A146343 := proc(n) for k from 1 do if A(k) = n then RETURN(k); fi; od: end: for n from 1 to 30 do printf("%d,",A146343(n)) ; od: # R. J. Mathar, Nov 08 2008
-
nn = 50; t = Table[0, {nn}]; cnt = 0; k = 1; While[cnt < nn, k++; cf = ContinuedFraction[(1 + Sqrt[k])/2]; If[Head[cf[[-1]]] === List, len = Length[cf[[-1]]]; If[len <= nn && t[[len]] == 0, t[[len]] = k; cnt++]]]; t
a(6) changed to 18, a(25) to 929, a(28) to 334 by
R. J. Mathar, Nov 08 2008
A146350
Primes p such that continued fraction of (1+sqrt(p))/2 has period 5 : primes in A146330.
Original entry on oeis.org
41, 149, 157, 181, 269, 397, 761, 941, 1013, 2081, 2153, 2477, 2693, 3181, 3221, 3533, 4253, 4409, 5273, 5297, 5741, 6949, 8069, 8501, 8597, 9293, 10301, 10357, 10957, 11321, 12281, 12589, 13313, 17477, 19477, 19949, 20369, 21433, 22397, 23957, 26309
Offset: 1
Comments