cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A106664 Expansion of g.f.: (1-3*x+x^2)/((1-x)*(1+x)*(1-2*x+2*x^2)).

Original entry on oeis.org

-1, 1, 2, 5, 4, 1, -8, -15, -16, 1, 32, 65, 64, 1, -128, -255, -256, 1, 512, 1025, 1024, 1, -2048, -4095, -4096, 1, 8192, 16385, 16384, 1, -32768, -65535, -65536, 1, 131072, 262145, 262144, 1, -524288, -1048575, -1048576, 1, 2097152, 4194305, 4194304, 1, -8388608, -16777215, -16777216, 1, 33554432
Offset: 0

Views

Author

Creighton Dement, May 13 2005

Keywords

Comments

Superseeker finds that a(n+2) - a(n) = A090131(n+1) (or with different signs, see A078069).
Floretion Algebra Multiplication Program, FAMP Code: 2ibaseiseq[ + .5'i + .5i' - .5'ii' + .5'jj' + .5'kk' + .5e]

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!(  (1-3*x+x^2)/((1-x^2)*(1-2*x+2*x^2)) )); // G. C. Greubel, Sep 08 2021
    
  • Mathematica
    CoefficientList[Series[(1-3x+x^2)/((1-x)(1+x)(1-2x+2x^2)),{x,0,60}],x] (* Harvey P. Dale, Mar 20 2013 *)
  • SageMath
    def A106664_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( sinh(x) -exp(x)*(cos(x)-sin(x)) ).egf_to_ogf().list()
    A106664_list(50) # G. C. Greubel, Sep 08 2021

Formula

a(n) = (1/2)*(A010673(n) - A099087(n+2)).
a(n) = (1/2)*(1 - (-1)^n - (1-i)^(n+1) - (1+i)^(n+1)), with i=sqrt(-1). - Ralf Stephan, Nov 16 2010
From G. C. Greubel, Sep 08 2021: (Start)
a(n) = (1-(-1)^n)/2 - 2^((n+1)/2)*cos((n+1)*Pi/4).
a(n) = A000035(n) - A146559(n).
E.g.f.: sinh(x) - exp(x)*(cos(x) - sin(x)). (End)

A141665 A signed half of Pascal's triangle A007318: p(x,n) = (1+I*x)^n; t(n,m) = real part of coefficients(p(x,n)).

Original entry on oeis.org

1, 1, 0, 1, 0, -1, 1, 0, -3, 0, 1, 0, -6, 0, 1, 1, 0, -10, 0, 5, 0, 1, 0, -15, 0, 15, 0, -1, 1, 0, -21, 0, 35, 0, -7, 0, 1, 0, -28, 0, 70, 0, -28, 0, 1, 1, 0, -36, 0, 126, 0, -84, 0, 9, 0, 1, 0, -45, 0, 210, 0, -210, 0, 45, 0, -1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 05 2008

Keywords

Comments

Polynomials like these are seen in complex dynamics.
This method symmetrically breaks up Pascal's triangle A007318 into two parts as polynomial coefficient vectors. See the examples for the s(n,m) = imaginary part of coefficients(p(x,n)).
From Johannes W. Meijer, Mar 10 2012: (Start)
The row sums equal A146559 and the two antidiagonal sums lead to A104862 (minus a(0)) and A110161 (minus a(0)).
The mirror of this triangle (for the absolute values of the coefficients) is A119467. (End)

Examples

			s(n,m) = imaginary part of coefficients(p(x,n))
  {0},
  {0,   1},
  {0,   2,   0},
  {0,   3,   0,   -1},
  {0,   4,   0,   -4,   0},
  {0,   5,   0,  -10,   0,   1},
  {0,   6,   0,  -20,   0,   6,   0},
  {0,   7,   0,  -35,   0,  21,   0,   -1},
  {0,   8,   0,  -56,   0,  56,   0,   -8,   0},
  {0,   9,   0,  -84,   0, 126,   0,  -36,   0,   1},
  {0,  10,   0, -120,   0, 252,   0, -120,   0,  10,   0}
		

Crossrefs

Programs

  • Maple
    From Johannes W. Meijer, Mar 10 2012: (Start)
    nmax:=10: for n from 0 to nmax do p(x,n) := (1+I*x)^n: for m from 0 to n do t(n,m) := Re(coeff(p(x,n), x, m)) od: od: seq(seq(t(n,m), m=0..n), n=0..nmax);
    nmax:=10: for n from 0 to nmax do for m from 0 to n do A119467(n,m) := binomial(n,m) * (1+(-1)^(n-m))/2: if (m mod 4 = 2) then x(n,m):= -1 else x(n,m):= 1 end if: od: od: for n from 0 to nmax do for m from 0 to n do t(n,m) := A119467(n,n-m)*x(n,m) od: od: seq(seq(t(n,m), m=0..n), n=0..nmax); # (End)
  • Mathematica
    p[x_, n_] := If[n == 0, 1, Product[(1 + I*x), {i, 1, n}]]; Table[Expand[p[x, n]], {n, 0, 10}]; Table[Im[CoefficientList[p[x, n], x]], {n, 0, 10}]; Flatten[%] Table[Re[CoefficientList[p[x, n], x]], {n, 0, 10}]; Flatten[%]

Formula

p(x,n) = (1+I*x)^n
t(n,m) = real part of coefficients(p(x,n))
s(n,m) = imaginary part of coefficients(p(x,n))

Extensions

Edited and information added by Johannes W. Meijer, Mar 10 2012

A158499 Expansion of (1 + sqrt(1-4*x))/(2-4*x).

Original entry on oeis.org

1, 1, 1, 0, -5, -24, -90, -312, -1053, -3536, -11934, -40664, -140114, -488240, -1719380, -6113200, -21921245, -79200160, -288045110, -1053728920, -3874721030, -14313562480, -53093391980, -197669347600, -738398308850, -2766700765024
Offset: 0

Views

Author

Paul Barry, Mar 20 2009

Keywords

Comments

Hankel transform is A056594 with g.f. 1/(1+x^2).
Row sums of the Riordan array (sqrt(1-4*x)/(1-2*x), x*c(x)^2), c(x) the g.f. of A000108.
The inverse Catalan transform yields A146559. - R. J. Mathar, Mar 20 2009

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else (6*(n-2)*Self(n-1) - 4*(2*n-5)*Self(n-2))/(n-1): n in [1..30]]; // G. C. Greubel, Mar 17 2025
    
  • Mathematica
    CoefficientList[ Series[(1 + Sqrt[1 - 4x])/(2 - 4x), {x, 0, 26}], x] (* Robert G. Wilson v, Nov 08 2015 *)
  • PARI
    my(x='x+O('x^33)); Vec(((1-4*x)+sqrt(1-4*x))/(2*(1-2*x)*sqrt(1-4*x))) \\ Altug Alkan, Nov 08 2015
    
  • SageMath
    @CachedFunction
    def a(n): # a = A158499
        if n<2: return 1
        else: return (6*(n-1)*a(n-1) - 4*(2*n-3)*a(n-2))/n
    [a(n) for n in range(41)] # G. C. Greubel, Mar 17 2025

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k)*A158495(n-k).
n*a(n) + 6*(1-n)*a(n-1) + 4*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011

Extensions

Name edited by Matthew House, Nov 08 2015

A221131 Table, T, read by antidiagonals where T(-j,k) = ((1+sqrt(j))^k + (1-sqrt(j))^k)/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -4, 1, 1, 1, -3, -8, -7, -4, 1, 1, 1, -4, -11, -8, 1, 0, 1, 1, 1, -5, -14, -7, 16, 23, 8, 1, 1, 1, -6, -17, -4, 41, 64, 43, 16, 1, 1, 1, -7, -20, 1, 76, 117, 64, 17, 16, 1, 1, 1, -8, -23, 8, 121, 176, 29, -128, -95, 0, 1
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com) and Robert G. Wilson v, Jan 02 2013

Keywords

Comments

.j\k.........0..1...2....3...4....5....6......7.......8......9......10
.0: A000012..1..1...1....1...1....1....1......1.......1......1.......1
-1: A146559..1..1...0...-2..-4...-4....0......8......16.....16.......0
-2: A087455..1..1..-1...-5..-7....1...23.....43......17....-95....-241
-3: A138230..1..1..-2...-8..-8...16...64.....64....-128...-512....-512
-4: A006495..1..1..-3..-11..-7...41..117.....29....-527..-1199.....237
-5: A138229..1..1..-4..-14..-4...76..176...-104...-1264..-1904....3776
-6: A090592..1..1..-5..-17...1..121..235...-377...-2399..-2159...12475
-7: A090590..1..1..-6..-20...8..176..288...-832...-3968..-1280...29184
-8: A025172..1..1..-7..-23..17..241..329..-1511...-5983...1633...57113
-9: A120743..1..1..-8..-26..28..316..352..-2456...-8432...7696...99712
-10: ........1..1..-9..-29..41..401..351..-3709..-11279..18241..160551

Crossrefs

Programs

  • Mathematica
    T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; Table[ T[ -j + k, k], {j, 0, 11}, {k, 0, j}] // Flatten

A305708 Expansion of e.g.f. exp(cos(x)/exp(x) - 1).

Original entry on oeis.org

1, -1, 1, 1, -11, 43, -83, -275, 3833, -21561, 51369, 375593, -5860147, 40452371, -101676235, -1409619211, 23912208945, -189650997937, 454996127889, 11250036170129, -204691511497499, 1799897065507003, -3741969787709699, -164548323889940675, 3183842522596250537, -30356999697044585833
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2018

Keywords

Examples

			exp(cos(x)/exp(x) - 1) = 1 - x + x^2/2! + x^3/3! - 11*x^4/4! + 43*x^5/5! - 83*x^6/6! - 275*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(exp(cos(x)/exp(x)-1),x=0,26): seq(n!*coeff(a,x,n),n=0..25); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Cos[x]/Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Re[(-1 - I)^k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 25}]

A370359 Imaginary part of (n + n*i)^n where i = sqrt(-1).

Original entry on oeis.org

0, 1, 8, 54, 0, -12500, -373248, -6588344, 0, 6198727824, 320000000000, 9129973459552, 0, -19384006821904192, -1422336873671426048, -56050417968750000000, 0, 211773507042902211629312, 20145360934551827238617088, 1012950863698080557631477248, 0, -5982809106827246101894271407104
Offset: 0

Views

Author

Chai Wah Wu, Feb 16 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = imag((n + n*I)^n); \\ Michel Marcus, Feb 16 2024
  • Python
    def A370359(n): return n**n*((0, 1, 2, 2)[n&3]<<((n>>1)&-2))*(-1 if n&4 else 1)
    

Formula

a(n) = n^n*A009545(n) = n^n*Sum_{j=0..floor((n-1)/2)} binomial(n,2*j+1)*(-1)^j.
a(n) = 0 if and only if n == 0 mod 4.
a(4n) = 0.
a(4n+1) = (4n+1)^(4n+1)*(-4)^n.
a(4n+2) = 2*(4n+2)^(4n+2)*(-4)^n.
a(4n+3) = 2*(4n+3)^(4n+3)*(-4)^n.
Previous Showing 31-36 of 36 results.