A106664
Expansion of g.f.: (1-3*x+x^2)/((1-x)*(1+x)*(1-2*x+2*x^2)).
Original entry on oeis.org
-1, 1, 2, 5, 4, 1, -8, -15, -16, 1, 32, 65, 64, 1, -128, -255, -256, 1, 512, 1025, 1024, 1, -2048, -4095, -4096, 1, 8192, 16385, 16384, 1, -32768, -65535, -65536, 1, 131072, 262145, 262144, 1, -524288, -1048575, -1048576, 1, 2097152, 4194305, 4194304, 1, -8388608, -16777215, -16777216, 1, 33554432
Offset: 0
-
R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-3*x+x^2)/((1-x^2)*(1-2*x+2*x^2)) )); // G. C. Greubel, Sep 08 2021
-
CoefficientList[Series[(1-3x+x^2)/((1-x)(1+x)(1-2x+2x^2)),{x,0,60}],x] (* Harvey P. Dale, Mar 20 2013 *)
-
def A106664_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( sinh(x) -exp(x)*(cos(x)-sin(x)) ).egf_to_ogf().list()
A106664_list(50) # G. C. Greubel, Sep 08 2021
A141665
A signed half of Pascal's triangle A007318: p(x,n) = (1+I*x)^n; t(n,m) = real part of coefficients(p(x,n)).
Original entry on oeis.org
1, 1, 0, 1, 0, -1, 1, 0, -3, 0, 1, 0, -6, 0, 1, 1, 0, -10, 0, 5, 0, 1, 0, -15, 0, 15, 0, -1, 1, 0, -21, 0, 35, 0, -7, 0, 1, 0, -28, 0, 70, 0, -28, 0, 1, 1, 0, -36, 0, 126, 0, -84, 0, 9, 0, 1, 0, -45, 0, 210, 0, -210, 0, 45, 0, -1
Offset: 0
s(n,m) = imaginary part of coefficients(p(x,n))
{0},
{0, 1},
{0, 2, 0},
{0, 3, 0, -1},
{0, 4, 0, -4, 0},
{0, 5, 0, -10, 0, 1},
{0, 6, 0, -20, 0, 6, 0},
{0, 7, 0, -35, 0, 21, 0, -1},
{0, 8, 0, -56, 0, 56, 0, -8, 0},
{0, 9, 0, -84, 0, 126, 0, -36, 0, 1},
{0, 10, 0, -120, 0, 252, 0, -120, 0, 10, 0}
-
From Johannes W. Meijer, Mar 10 2012: (Start)
nmax:=10: for n from 0 to nmax do p(x,n) := (1+I*x)^n: for m from 0 to n do t(n,m) := Re(coeff(p(x,n), x, m)) od: od: seq(seq(t(n,m), m=0..n), n=0..nmax);
nmax:=10: for n from 0 to nmax do for m from 0 to n do A119467(n,m) := binomial(n,m) * (1+(-1)^(n-m))/2: if (m mod 4 = 2) then x(n,m):= -1 else x(n,m):= 1 end if: od: od: for n from 0 to nmax do for m from 0 to n do t(n,m) := A119467(n,n-m)*x(n,m) od: od: seq(seq(t(n,m), m=0..n), n=0..nmax); # (End)
-
p[x_, n_] := If[n == 0, 1, Product[(1 + I*x), {i, 1, n}]]; Table[Expand[p[x, n]], {n, 0, 10}]; Table[Im[CoefficientList[p[x, n], x]], {n, 0, 10}]; Flatten[%] Table[Re[CoefficientList[p[x, n], x]], {n, 0, 10}]; Flatten[%]
A158499
Expansion of (1 + sqrt(1-4*x))/(2-4*x).
Original entry on oeis.org
1, 1, 1, 0, -5, -24, -90, -312, -1053, -3536, -11934, -40664, -140114, -488240, -1719380, -6113200, -21921245, -79200160, -288045110, -1053728920, -3874721030, -14313562480, -53093391980, -197669347600, -738398308850, -2766700765024
Offset: 0
-
[n le 2 select 1 else (6*(n-2)*Self(n-1) - 4*(2*n-5)*Self(n-2))/(n-1): n in [1..30]]; // G. C. Greubel, Mar 17 2025
-
CoefficientList[ Series[(1 + Sqrt[1 - 4x])/(2 - 4x), {x, 0, 26}], x] (* Robert G. Wilson v, Nov 08 2015 *)
-
my(x='x+O('x^33)); Vec(((1-4*x)+sqrt(1-4*x))/(2*(1-2*x)*sqrt(1-4*x))) \\ Altug Alkan, Nov 08 2015
-
@CachedFunction
def a(n): # a = A158499
if n<2: return 1
else: return (6*(n-1)*a(n-1) - 4*(2*n-3)*a(n-2))/n
[a(n) for n in range(41)] # G. C. Greubel, Mar 17 2025
A221131
Table, T, read by antidiagonals where T(-j,k) = ((1+sqrt(j))^k + (1-sqrt(j))^k)/2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -4, 1, 1, 1, -3, -8, -7, -4, 1, 1, 1, -4, -11, -8, 1, 0, 1, 1, 1, -5, -14, -7, 16, 23, 8, 1, 1, 1, -6, -17, -4, 41, 64, 43, 16, 1, 1, 1, -7, -20, 1, 76, 117, 64, 17, 16, 1, 1, 1, -8, -23, 8, 121, 176, 29, -128, -95, 0, 1
Offset: 0
-
T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; Table[ T[ -j + k, k], {j, 0, 11}, {k, 0, j}] // Flatten
A305708
Expansion of e.g.f. exp(cos(x)/exp(x) - 1).
Original entry on oeis.org
1, -1, 1, 1, -11, 43, -83, -275, 3833, -21561, 51369, 375593, -5860147, 40452371, -101676235, -1409619211, 23912208945, -189650997937, 454996127889, 11250036170129, -204691511497499, 1799897065507003, -3741969787709699, -164548323889940675, 3183842522596250537, -30356999697044585833
Offset: 0
exp(cos(x)/exp(x) - 1) = 1 - x + x^2/2! + x^3/3! - 11*x^4/4! + 43*x^5/5! - 83*x^6/6! - 275*x^7/7! + ...
-
a:=series(exp(cos(x)/exp(x)-1),x=0,26): seq(n!*coeff(a,x,n),n=0..25); # Paolo P. Lava, Mar 26 2019
-
nmax = 25; CoefficientList[Series[Exp[Cos[x]/Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Re[(-1 - I)^k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 25}]
A370359
Imaginary part of (n + n*i)^n where i = sqrt(-1).
Original entry on oeis.org
0, 1, 8, 54, 0, -12500, -373248, -6588344, 0, 6198727824, 320000000000, 9129973459552, 0, -19384006821904192, -1422336873671426048, -56050417968750000000, 0, 211773507042902211629312, 20145360934551827238617088, 1012950863698080557631477248, 0, -5982809106827246101894271407104
Offset: 0
-
a(n) = imag((n + n*I)^n); \\ Michel Marcus, Feb 16 2024
-
def A370359(n): return n**n*((0, 1, 2, 2)[n&3]<<((n>>1)&-2))*(-1 if n&4 else 1)
Comments