cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A060805 Numerators of special continued fraction for 2*zeta(3).

Original entry on oeis.org

2, 1, 2, 1, 4, 2, 6, 4, 9, 6, 12, 9, 16, 12, 20, 16, 25, 20, 30, 25, 36, 30, 42, 36, 49, 42, 56, 49, 64, 56, 72, 64, 81, 72, 90, 81, 100, 90, 110, 100, 121, 110, 132, 121, 144, 132, 156, 144, 169, 156, 182, 169, 196, 182, 210, 196, 225, 210, 240, 225, 256, 240, 272, 256
Offset: 1

Views

Author

N. J. A. Sloane, Apr 29 2001

Keywords

References

  • Y. V. Nesterenko, A few remarks on zeta(3), Mathematical Notes, 59 (No. 6, 1996), 625-636.

Crossrefs

Cf. A152648 (2*zeta(3)).

Programs

  • Maple
    A060805 := proc(n) local nshf,k ; if n <= 2 then op(n,[2,1]) ; else nshf := n-1 ; k := floor(nshf/4) ; if nshf mod 4 = 1 then k*(k+1) ; elif nshf mod 4 = 0 then (k+1)^2 ; elif nshf mod 4 = 2 then (k+1)*(k+2) ; else (k+1)^2 ; end if; end if; end proc: seq(A060805(n),n=1..80) ; # R. J. Mathar, Jul 31 2010
  • Mathematica
    Join[{2, 1}, LinearRecurrence[{1, 1, -1, 1, -1, -1, 1}, {2, 1, 4, 2, 6, 4, 9}, 100]] (* Jean-François Alcover, Apr 01 2020 *)

Formula

a(n) = A008733(n-1), n>2. - R. J. Mathar, Jul 31 2010

Extensions

More terms from R. J. Mathar, Jul 31 2010

A238183 Decimal expansion of sum_(n>=1) H(n)^2/n^7 where H(n) is the n-th harmonic number (Quadratic Euler Sum S(2,7)).

Original entry on oeis.org

1, 0, 1, 9, 4, 8, 3, 4, 9, 7, 4, 9, 4, 3, 8, 2, 2, 8, 6, 2, 0, 6, 4, 9, 6, 6, 7, 5, 9, 2, 8, 1, 2, 6, 5, 1, 5, 0, 6, 1, 8, 9, 4, 4, 2, 2, 9, 0, 4, 2, 8, 8, 8, 6, 3, 3, 3, 4, 0, 1, 4, 6, 3, 1, 6, 1, 9, 8, 5, 3, 7, 4, 0, 0, 6, 8, 7, 3, 5, 5, 5, 0, 0, 2, 7, 3, 1, 4, 6, 2, 1, 0, 0, 3, 1, 6, 6, 5, 5, 3
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.019483497494382286206496675928126515...
		

Crossrefs

Programs

  • Mathematica
    Zeta[3]^3/3 - 5/2*Zeta[4]*Zeta[5] - 7/2*Zeta[3]*Zeta[6] - Zeta[2]*Zeta[7] + 55/6*Zeta[9] // RealDigits[#, 10, 100]& // First

Formula

zeta(3)^3/3-5/2*zeta(4)*zeta(5)-7/2*zeta(3)*zeta(6)-zeta(2)*zeta(7)+55/6*zeta(9).

A233033 Decimal expansion of sum_(n=1..infinity) (-1)^(n-1)*H(n)/n^3 where H(n) is the n-th harmonic number.

Original entry on oeis.org

8, 5, 9, 2, 4, 7, 1, 5, 7, 9, 2, 8, 5, 9, 0, 6, 1, 5, 5, 3, 9, 9, 0, 9, 9, 3, 9, 4, 7, 5, 7, 5, 9, 9, 8, 0, 7, 1, 2, 8, 8, 4, 3, 5, 0, 8, 6, 0, 4, 1, 4, 9, 2, 6, 7, 6, 0, 5, 2, 0, 6, 8, 9, 7, 6, 6, 3, 8, 3, 4, 8, 1, 5, 3, 3, 4, 8, 9, 2, 3, 3, 0, 7, 1, 1, 3, 8, 8, 3, 8, 1, 5, 1, 8, 8, 4, 3, 0, 6, 0
Offset: 0

Views

Author

Jean-François Alcover, Dec 03 2013

Keywords

Examples

			0.859247157928590615539909939475759980712884350860414926760520689766...
		

Crossrefs

Cf. A076788 (same alternating sum with denominator n), A152648 (non-alternating sum with denominator n^2), A152649 (non-alternating sum with denominator n^3).

Programs

  • Mathematica
    RealDigits[ 11*Pi^4/360 + 1/12*Pi^2*Log[2]^2 - Log[2]^4/12 - 2*PolyLog[4, 1/2] - 7/4*Log[2]*Zeta[3], 10, 100] // First
  • PARI
    11*Pi^4/360 + Pi^2*log(2)^2/12 - log(2)^4/12 - 2*polylog(4, 1/2) - 7*log(2)*zeta(3)/4 \\ Charles R Greathouse IV, Aug 27 2014

Formula

Equals 11*Pi^4/360 +1/12*Pi^2*log(2)^2 -log(2)^4/12 -2*Li4(1/2) -7/4*log(2)*zeta(3).
Also, equals 1/2*integral_{z=0..1} (log(z)^2*log(1+z)) / (z*(1+z)) dz.

A256987 Decimal expansion of Sum_{k>=1} H(k)*H(k,2)/k^2 where H(k) is the k-th harmonic number and H(k,2) the k-th harmonic number of order 2.

Original entry on oeis.org

3, 0, 1, 4, 2, 3, 2, 1, 0, 5, 4, 4, 0, 6, 6, 6, 0, 4, 4, 5, 2, 8, 4, 5, 0, 9, 2, 7, 9, 4, 2, 1, 5, 9, 7, 4, 0, 1, 3, 9, 2, 3, 2, 3, 8, 6, 1, 6, 2, 0, 4, 7, 0, 2, 0, 6, 7, 0, 0, 1, 4, 9, 5, 4, 9, 5, 8, 5, 1, 8, 6, 2, 3, 9, 3, 2, 8, 8, 5, 6, 9, 2, 2, 6, 2, 4, 2, 7, 4, 7, 9, 0, 7, 8, 8, 8, 2, 9, 4, 3, 7, 5, 1, 7, 1
Offset: 1

Views

Author

Jean-François Alcover, Apr 14 2015

Keywords

Examples

			3.01423210544066604452845092794215974013923238616204702067...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[5] + (Pi^2/6)*Zeta[3], 10, 105] // First
  • PARI
    zeta(5) + zeta(2)*zeta(3) \\ Michel Marcus, Apr 14 2015

Formula

zeta(5) + zeta(2)*zeta(3) = zeta(5) + (Pi^2/6)*zeta(3).

A351164 Decimal expansion of gamma * BesselI(0,2) + BesselK(0,2).

Original entry on oeis.org

1, 4, 2, 9, 7, 0, 6, 2, 1, 8, 7, 3, 7, 2, 0, 8, 3, 1, 3, 1, 8, 6, 7, 4, 6, 5, 6, 5, 5, 4, 5, 2, 8, 0, 9, 5, 7, 7, 3, 7, 2, 7, 7, 8, 9, 6, 8, 3, 9, 9, 2, 0, 3, 4, 6, 8, 7, 2, 4, 0, 9, 1, 3, 3, 9, 1, 8, 9, 8, 2, 5, 1, 8, 7, 3, 1, 0, 9, 6, 5, 4, 3, 4, 8, 8, 7, 4, 9, 8, 0, 6, 1, 1, 8, 1, 7, 2, 4, 3, 4, 0, 1, 6, 4, 9, 4, 0, 4, 8, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 03 2022

Keywords

Examples

			1.4297062187372083131867465655452809577372778968399203468724...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[EulerGamma BesselI[0, 2] + BesselK[0, 2], 10, 110] [[1]]

Formula

Equals Sum_{k>=1} H(k) / (k!)^2, where H(k) is the k-th harmonic number.

A241215 Decimal expansion of Sum_{n>=1} H(n)^4/(n+1)^3 where H(n) is the n-th harmonic number.

Original entry on oeis.org

1, 8, 0, 1, 6, 1, 3, 2, 6, 8, 0, 4, 3, 4, 1, 2, 9, 0, 3, 7, 2, 9, 4, 8, 8, 9, 4, 2, 0, 2, 0, 8, 8, 8, 4, 3, 0, 3, 1, 3, 7, 7, 5, 8, 2, 7, 7, 8, 7, 8, 9, 3, 3, 0, 0, 8, 7, 3, 3, 9, 4, 9, 2, 5, 4, 8, 0, 4, 4, 4, 8, 1, 8, 8, 4, 0, 8, 9, 3, 3, 3, 7, 5, 3, 0, 9, 4, 5, 7, 4, 3, 3, 0, 4, 2, 7, 1, 9, 3, 1
Offset: 1

Views

Author

Jean-François Alcover, Apr 17 2014

Keywords

Examples

			1.80161326804341290372948894202088843...
		

Crossrefs

Programs

  • Mathematica
    37/180*Pi^4*Zeta[3] - 5/6*Pi^2*Zeta[5] - 109/8*Zeta[7] // RealDigits[#, 10, 100]& // First
  • PARI
    37/2*zeta(3)*zeta(4) - 5*zeta(2)*zeta(5) - 109/8*zeta(7) \\ Stefano Spezia, Jan 19 2025

Formula

Equals (37/2)*zeta(3)*zeta(4) - 5*zeta(2)*zeta(5) - (109/8)*zeta(7).
Equals (37/180)*Pi^4*zeta(3) - (5/6)*Pi^2*zeta(5) - (109/8)*zeta(7).

A365251 Decimal expansion of the absolute value of psi^(4)(1), the fourth derivative of the digamma function at 1.

Original entry on oeis.org

2, 4, 8, 8, 6, 2, 6, 6, 1, 2, 3, 4, 4, 0, 8, 7, 8, 2, 3, 1, 9, 5, 2, 7, 7, 1, 6, 7, 4, 9, 6, 8, 8, 2, 0, 0, 3, 3, 3, 6, 9, 9, 4, 2, 0, 6, 8, 0, 4, 5, 9, 0, 7, 4, 8, 7, 3, 8, 0, 6, 2, 4, 2, 6, 9, 6, 9, 1, 2, 8, 6, 1, 5, 4, 8, 7, 0, 7, 5, 5, 6, 2, 9, 4, 4, 1, 0, 3, 4, 5, 5, 7
Offset: 2

Views

Author

R. J. Mathar, Aug 29 2023

Keywords

Examples

			psi^(4)(1) = -24.88626612344087823195277167496882...
		

Crossrefs

Cf. A013663, A231535 (3rd deriv), A152648 (2nd deriv), A013661 (1st deriv).

Programs

  • Maple
    evalf(Psi(4,1)) ;
  • Mathematica
    RealDigits[24*Zeta[5], 10, 100][[1]] (* Amiram Eldar, Aug 29 2023 *)
  • PARI
    psi''''(1) \\ Michel Marcus, Aug 29 2023

Formula

Equals 24*A013663.

A377636 Decimal expansion of 2*zeta(3)/Pi^2 - 11/18 + log(Pi)/3.

Original entry on oeis.org

0, 1, 4, 0, 5, 3, 1, 7, 3, 9, 7, 2, 5, 0, 1, 7, 7, 9, 8, 4, 5, 3, 7, 6, 9, 1, 6, 4, 4, 2, 4, 8, 0, 0, 0, 5, 9, 4, 7, 3, 2, 4, 3, 6, 1, 5, 5, 3, 7, 8, 4, 2, 3, 6, 0, 8, 3, 8, 7, 1, 6, 9, 8, 2, 5, 1, 9, 0, 4, 0, 2, 2, 4, 0, 9, 9, 9, 2, 7, 7, 1, 5, 7, 2, 4, 5, 3, 3, 2, 4, 6, 9, 4, 3, 8, 1, 4, 2, 5, 8, 8
Offset: 0

Views

Author

Stefano Spezia, Nov 03 2024

Keywords

Examples

			0.01405317397250177984537691644248000594732436155378...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 44.

Crossrefs

Programs

  • Mathematica
    RealDigits[2Zeta[3]/Pi^2-11/18+Log[Pi]/3,10,100][[1]]

Formula

Equals Sum_{k>=1} zeta(2*k)/(k*(k + 1)*(2*k + 1)*(2*k + 3)*2^(2*k)) [Wilton] (see Finch).

A379561 a(n) = A003418(n+1)*H(n), where H(n) = 1 + 1/2 + ... + 1/n is the n-th harmonic number.

Original entry on oeis.org

2, 9, 22, 125, 137, 1029, 2178, 6849, 7129, 81191, 83711, 1118273, 1145993, 1171733, 2391514, 41421503, 42142223, 813635157, 825887397, 837527025, 848612385, 19761458895, 19994251455, 101086721625, 102157567401, 309561680403, 312536252003, 9146733078187
Offset: 1

Views

Author

Miko Labalan, Dec 26 2024

Keywords

Comments

abs(log(a(n)) - n - log(log(n))) < c*sqrt(n)*log(n)^(-1/2), where constant c = (2+A206431)*Pi/4. This also gives the upper bound of the squared error, (log(a(n)) - n - log(log(n)))^2 < (c^2)*n*log(n)^(-1).
A slightly better absolute error bound could be achieved by using the imaginary part of the nontrivial zeros of the Riemann zeta function, (zetazero(n)-1/2)/sqrt(-1) ~ (2*Pi)*n*LambertW(n/exp(1))^(-1). That bound would be, abs(log(a(n)) - n - log(log(n))) < sqrt(k)*sqrt(n)*LambertW(n/exp(1))^(-1/2), where constant k = 4*Pi/(1+2*A206431). This also gives the upper bound of the squared error, (log(a(n)) - n - log(log(n)))^2 < k*n*LambertW(n/exp(1))^(-1). The midline of the squared error would run along (4/(4+A206431))*n*LambertW(n/exp(1))^(-1).
Another slightly better absolute error bound but without relying on the properties of the zeta zeros would be, abs(log(a(n)) - n - log(log(n))) < n^(3/(9-10*A077761)).
log(a(n))-c*sqrt(n)*log(n)^(-1/2) is a lower bound of sigma_1(n) = A000203(n). Such that, n+log(log(n))-c*sqrt(n)*log(n)^(-1/2) < sigma_1(n) < H(n)+exp(H(n))*log(H(n)).
a(n) gives the total number of ordered pairs (k,m) where k in set {1,2,...,n}, m in set {1,2,...,A003418(n+1)}, and k divides m. Example: For n = 3, there are 22 ordered pairs (k,m) where k is {1,2,3} and m is a multiple of k up to 12. For k = 1, every m is a multiple of 1, m is {1,2,3,4,5,6,7,8,9,10,11,12} so there are 12 pairs. For k = 2, every m is a multiple of 2, m is {2,4,6,8,10,12} so there are 6 pairs. For k = 3, every m is a multiple of 3, m is {3,6,9,12} so there are 4 pairs. So the total ordered pairs is 12 + 6 + 4 = 22 = a(3). Each ordered pair (k,m) also represents an edge in a bipartite graph. Counting all such pairs gives the total number of edges in a graph.

Examples

			a(n)/A025558(n) = [ 2/1, 9/4, 22/9, 125/48, 137/50, 1029/360, 2178/735, ... ]
To evaluate the integral:
For n = 1: Integral_{x=0..1} Li_1(x^(1/2))/x^(1/2) dx = Integral_{x=0..1} -log(1-x^(1/2))/x^(1/2) dx = -2 * -(Sum_{x=1..oo} 1/(x*(x+1))) = -2 * -1 = 2.
For n = 2: Integral_{x=0..1} Li_1(x^(1/3))/x^(1/3) dx = Integral_{x=0..1} -log(1-x^(1/3))/x^(1/3) dx = -3 * -(Sum_{x=1..oo} 1/(x*(x+2))) = -3 * -((1/2)*(1+1/2)) = -3 * -3/4 = 9/4.
For n = 3: Integral_{x=0..1} Li_1(x^(1/4))/x^(1/4) dx = Integral_{x=0..1} -log(1-x^(1/4))/x^(1/4) dx = -4 * -(Sum_{x=1..oo} 1/(x*(x+3))) = -4 * -((1/3)*(1+1/2+1/3)) = -4 * -11/18 = 22/9.
		

Crossrefs

Cf. A001008/A002805 (harmonic numbers).
Cf. A003418 (lcm).
Cf. A025558 (denominator).
Cf. A193758 (very similar sequence).

Programs

  • PARI
    a(n) = lcm(vector(n+1, i, i))*sum(i=1, n, 1/i); \\ Michel Marcus, Dec 28 2024

Formula

a(n) = A025558(n)*(Integral_{x=0..1} Li_1(x^(1/(n+1)))/x^(1/(n+1)) dx).
a(n) = A025558(n) + A027457(n+1).
Integral_{x=0..1} Li_1(x^(1/(n+1)))/x^(1/(n+1)) dx = ((n+1)/n)*H(n) = a(n)/A025558(n).
((n+1)/n)*H(n) ~ log(n) + gamma + (log(n)+gamma+1/2)/n + O(1/n^2).
log(a(n)) ~ n + log(log(n)) + O(c*sqrt(n)*log(n)^(-1/2)), (See comments for constant c).
G.f. for ((n+1)/n)*H(n): G(x) = Li_2(x)+(1/2)*log(1-x)^2-log(1-x)/(1-x), the lim_{x->oo} G(x) = -zeta(2).
Hyperbolic l.g.f. for ((n+1)/n)*H(n): LH(x) = Li_2(x)+(1/2)*log(1-x)^2+Li_3(x)-Li_3(1-x)+Li_2(1-x)*log(1-x)+(1/2)*log(x)*log(1-x)^2+zeta(3), the Integral_{x=0..1} LH(x) dx = 2*zeta(3) = A152648.
Dirichlet g.f. for ((n+1)/n)*H(n): zeta(s+1)*(zeta(s)+zeta(s+2)).

A384457 Decimal expansion of Sum_{k>=1} H(k)^3/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

3, 5, 9, 3, 4, 2, 7, 9, 4, 1, 7, 7, 4, 9, 4, 2, 9, 6, 0, 2, 5, 5, 1, 8, 2, 4, 0, 7, 0, 3, 3, 3, 9, 2, 1, 9, 5, 9, 1, 6, 9, 5, 4, 8, 0, 3, 5, 1, 9, 3, 3, 8, 9, 3, 7, 6, 9, 7, 3, 8, 6, 1, 1, 9, 1, 8, 8, 8, 2, 8, 1, 2, 6, 9, 6, 1, 9, 2, 6, 3, 4, 0, 3, 7, 3, 9, 5, 7, 8, 6, 7, 6, 8, 6, 4, 7, 4, 5, 8, 7, 3, 5, 5, 3, 7
Offset: 1

Views

Author

Amiram Eldar, May 30 2025

Keywords

Examples

			3.59342794177494296025518240703339219591695480351933...
		

References

  • K. Ramachandra and R. Sitaramachandrarao, On series, integrals and continued fractions - II, Madras Univ. J., Sect. B, 51 (1988), pp. 181-198.

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3] + (Pi^2*Log[2] + Log[2]^3)/3, 10, 120][[1]]
  • PARI
    zeta(3) + (Pi^2*log(2) + log(2)^3)/3

Formula

Equals zeta(3) + (Pi^2*log(2) + log(2)^3)/3.
Previous Showing 11-20 of 25 results. Next