cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A152992 a(n) = sigma(n) - d(n) - pi(n).

Original entry on oeis.org

0, 0, 0, 2, 1, 5, 2, 7, 6, 10, 5, 17, 6, 14, 14, 20, 9, 26, 10, 28, 20, 24, 13, 43, 19, 29, 27, 41, 18, 54, 19, 46, 33, 39, 33, 71, 24, 44, 40, 70, 27, 75, 28, 64, 58, 54, 31, 99, 39, 72, 53, 77, 36, 96, 52, 96, 60, 70, 41, 139, 42, 74, 80, 102, 62, 118, 47, 101, 73, 117, 50
Offset: 1

Views

Author

Omar E. Pol, Dec 19 2008, Dec 31 2008

Keywords

Examples

			a(15) = 24 - 4 - 6 = 14 because the sum of divisors of 15 is 1 + 3 + 5 + 15 = 24, the number of divisors of 15 is 4 (1,3,5,15) and the number of primes not exceeding 15 is 6 (2,3,5,7,11,13). - _Emeric Deutsch_, Dec 30 2008
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(sigma(n)-tau(n)-pi(n), n = 1 .. 75); # Emeric Deutsch, Dec 30 2008
  • Mathematica
    Table[DivisorSigma[1,n]-DivisorSigma[0,n]-PrimePi[n],{n,75}] (* Harvey P. Dale, Sep 19 2011 *)

Formula

a(n) = A000203(n) - A000005(n) - A000720(n) = A065608(n) - A000720(n) = A152991(n) - A000005(n).

Extensions

Corrected and extended by Emeric Deutsch, Dec 30 2008

A153011 Sum of proper divisors, minus the number of proper divisors, minus cototient of n, plus 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 5, 0, 6, 0, 0, 0, 14, 0, 0, 2, 8, 0, 14, 0, 11, 0, 0, 0, 24, 0, 0, 0, 20, 0, 18, 0, 12, 8, 0, 0, 36, 0, 9, 0, 14, 0, 24, 0, 26, 0, 0, 0, 54, 0, 0, 10, 26, 0, 26, 0, 18, 0, 22, 0, 65, 0, 0, 10, 20, 0, 30, 0, 50, 10, 0, 0, 70, 0, 0, 0, 38, 0, 68, 0, 24, 0
Offset: 1

Views

Author

Omar E. Pol, Dec 23 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A152770(n) - A051953(n) + 1.

Extensions

More terms from R. J. Mathar, Feb 19 2009

A153825 Sum of proper divisors minus the number of proper divisors of n!.

Original entry on oeis.org

0, 0, 0, 3, 29, 225, 1669, 14245, 118705, 1118001, 11705019, 144091717, 1738439017, 24817157329, 355309322689, 5378578597729, 86081749391905, 1570394279028289, 28281459220178401, 572031558109560385, 11458497230555053681
Offset: 0

Views

Author

Omar E. Pol, Jan 02 2009

Keywords

Comments

a(n) is the sum of proper divisors minus the number of proper divisors of factorial number A000142(n).

Crossrefs

Programs

  • Magma
    [DivisorSigma(1,Factorial(n)) - Factorial(n) - (DivisorSigma(0,Factorial(n))-1): n in [0..20]]; // Vincenzo Librandi, Aug 31 2016
    
  • Maple
    with(numtheory): seq(sigma(factorial(n))-factorial(n)-tau(factorial(n))+1, n = 0 .. 22); # Emeric Deutsch, Jan 07 2009
  • Mathematica
    Table[DivisorSigma[1,n!]-n!-(DivisorSigma[0,n!]-1),{n,0,20}] (* Harvey P. Dale, Jan 14 2012 *)
  • PARI
    a(n) = (sigma(n!) - n!) - (numdiv(n!) - 1); \\ Michel Marcus, Aug 31 2016

Formula

a(n) = A153824(n) - A153823(n) = A152770(A000142(n)).

Extensions

Extended by Emeric Deutsch, Jan 07 2009

A162196 Sum of proper divisors minus the number of proper divisors of nonprime number A018252(n).

Original entry on oeis.org

0, 1, 3, 4, 2, 5, 11, 7, 6, 11, 16, 17, 8, 11, 29, 4, 13, 10, 23, 35, 26, 12, 17, 10, 47, 19, 14, 43, 47, 35, 28, 23, 67, 6, 38, 18, 41, 59, 14, 57, 20, 29, 97, 31, 36, 57, 16, 71, 53, 24, 67, 112, 37, 44, 59, 16, 83, 97, 36, 41, 129, 20, 43, 30
Offset: 1

Views

Author

Omar E. Pol, Jul 04 2009

Keywords

Comments

Also, zero together with the positive integers of A152770.
Note that the k-th positive integer of this sequence is equal to the sum of proper divisors minus the number of proper divisors of the composite number A002808(k).

Crossrefs

Programs

Formula

a(n) = A152770(A018252(n)).
a(n) = A001065(A018252(n)) - A032741(A018252(n)).

A152758 Numbers k such that the deficiency of k plus the number of proper divisors of k is not a prime number (see A152864).

Original entry on oeis.org

1, 8, 12, 15, 24, 25, 30, 32, 33, 35, 36, 39, 40, 42, 44, 48, 50, 51, 54, 56, 60, 63, 65, 66, 68, 69, 72, 78, 80, 81, 84, 85, 87, 90, 92, 96, 98, 100, 102, 105, 108, 112, 114, 116, 117, 120, 121, 123, 126, 128, 129, 130, 132, 136, 138, 140, 141, 143, 144, 148, 150, 153
Offset: 1

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc (n) if isprime(2*n-sigma(n)+tau(n)-1) = false then n else end if end proc: seq(a(n), n = 1 .. 200); # Emeric Deutsch, Jan 08 2009

Extensions

Extended by Emeric Deutsch, Jan 08 2009
Name edited by Jon E. Schoenfield, Jan 06 2019

A152985 Sum of proper divisors minus the number of proper divisors of the square A000290(n).

Original entry on oeis.org

0, 1, 2, 11, 4, 47, 6, 57, 36, 109, 10, 245, 12, 195, 170, 247, 16, 509, 18, 547, 292, 439, 22, 1055, 152, 597, 358, 969, 28, 1895, 30, 1013, 632, 985, 534, 2431, 36, 1215, 850, 2317, 40, 3397, 42, 2173, 1712, 1747, 46, 4313, 396, 2953, 1382, 2955, 52, 4715, 1090, 4083
Offset: 1

Views

Author

Omar E. Pol, Dec 21 2008

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sigma(n^2) - n^2 - (numdiv(n^2) - 1); \\ Michel Marcus, Jan 28 2014

Formula

a(n) = A001065(A000290(n)) - A032741(A000290(n)) = A152770(A000290(n)).

A152986 Sum of proper divisors minus the number of proper divisors of pentagonal number A000326(n).

Original entry on oeis.org

0, 0, 11, 11, 10, 18, 67, 71, 60, 32, 187, 351, 30, 46, 519, 337, 128, 220, 577, 483, 366, 286, 507, 1153, 248, 336, 2489, 847, 70, 818, 871, 2181, 1108, 116, 2861, 2275, 694, 130, 2763, 3645, 100, 2352, 2823, 1863, 2278, 158, 3607, 6617, 636, 920, 6181, 4019
Offset: 1

Views

Author

Omar E. Pol, Dec 22 2008

Keywords

Crossrefs

Programs

Formula

Extensions

Extended by R. J. Mathar, Jan 03 2009

A152987 Sum of proper divisors minus the number of proper divisors of the number of partitions of n, A000041(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 6, 11, 35, 47, 57, 16, 0, 98, 187, 146, 176, 184, 525, 326, 1525, 1007, 254, 1632, 1275, 4261, 3311, 2859, 1476, 7489, 4383, 4408, 7624, 9859, 7450, 0, 5428, 9086, 38472, 50191, 29898, 33867, 41264, 22030, 47947, 109323, 107783, 77168
Offset: 1

Views

Author

Omar E. Pol, Dec 21 2008

Keywords

Comments

Note that if a(n) != 0 then the number of partitions of n (A000041(n)) is a composite number (A002808), otherwise A000041(n) is a noncomposite number (A008578). See A152770.

Crossrefs

Programs

Formula

a(n) = A001065(A000041(n)) - A032741(A000041(n)) = A152770(A000041(n)).

Extensions

More terms from R. J. Mathar, Jan 22 2009

A152993 a(n) = n - d(n) - pi(n) + 1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 1, 3, 3, 5, 2, 6, 5, 6, 6, 9, 6, 10, 7, 10, 11, 13, 8, 14, 14, 15, 14, 18, 13, 19, 16, 19, 20, 21, 17, 24, 23, 24, 21, 27, 22, 28, 25, 26, 29, 31, 24, 32, 30, 33, 32, 36, 31, 36, 33, 38, 39, 41, 32, 42, 41, 40, 40, 44, 41, 47, 44, 47, 44
Offset: 1

Views

Author

Omar E. Pol, Dec 19 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n-DivisorSigma[0,n]-PrimePi[n]+1,{n,70}] (* Harvey P. Dale, Sep 16 2020 *)
  • PARI
    a(n) = {n - numdiv(n) - primepi(n) + 1} \\ Andrew Howroyd, Jan 03 2020

Formula

a(n) = n - A000005(n) - A000720(n) + 1.

Extensions

Terms a(17) and beyond from Andrew Howroyd, Jan 03 2020

A154349 Sum of proper divisors minus the number of proper divisors of Motzkin number A001006(n).

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 18, 0, 34, 170, 1643, 3603, 0, 25118, 139063, 474559, 284490, 984006, 6536387, 24265729, 18678366, 96214018, 277799290, 1282283434, 2077807072, 1899874612, 19252363859, 44221482383, 1967547352, 29743945396, 1265868622
Offset: 0

Views

Author

Omar E. Pol, Jan 07 2009

Keywords

Comments

Note that, if a(n) != 0 then Motzkin number A001006(n) is a composite number (A002808), otherwise A001006(n) is a noncomposite number (A008578). See A152770.

Crossrefs

Programs

  • Maple
    with(numtheory): M := proc (n) options operator, arrow: (sum((-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n), j = 0 .. floor((1/3)*n)))/(n+1) end proc: seq(sigma(M(n))-M(n)-tau(M(n))+1, n = 0 .. 30); # Emeric Deutsch, Jan 12 2009
  • Mathematica
    mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; diff[n_] := DivisorSigma[1, n] - DivisorSigma[0, n] - n + 1; Table[diff[mot[n]], {n, 0, 30}] (* Amiram Eldar, Nov 26 2019 *)

Formula

a(n) = A001065(A001006(n)) - A032741(A001006(n)) = A152770(A001006(n)).

Extensions

Extended by Emeric Deutsch, Jan 12 2009
Previous Showing 11-20 of 21 results. Next