cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 2314 results. Next

A162879 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 42, 1722, 69741, 2824080, 114340800, 4629407580, 187434189600, 7588784431200, 307252630616400, 12439960566432000, 503665724648352000, 20392280251485912000, 825637071380896320000, 33428168171083640640000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • GAP
    a:=[42,1722,69741];; for n in [4..20] do a[n]:=40*a[n-1]+40*a[n-2] -820*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    I:=[1,42,1722,69741]; [n le 4 select I[n] else 40*Self(n-1) +40*Self(n-2)-820*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 14 2017
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 +2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(820*x^3-40*x^2-40*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1), {t, 0, 20}], t] (* Wesley Ivan Hurt, Apr 12 2017 *)
    Join[{1}, LinearRecurrence[{40, 40, -820}, {42, 1722, 69741}, 20]] (* Vincenzo Librandi, Apr 14 2017 *)
    coxG[{3, 820, -40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -41*x +860*x^3 -820*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(820*t^3 - 40*t^2 - 40*t + 1).
a(n) = 40*a(n-1) + 40*a(n-2) - 820*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 41*x + 860*x^3 - 820*x^4). - G. C. Greubel, Apr 27 2019

A162881 Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 43, 1806, 74949, 3109932, 129025155, 5353007478, 222085686501, 9213895794684, 382266301290027, 15859472304395790, 657978118553895573, 27298209939779232636, 1132548704737573481379, 46987204341696557186262
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170762, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[43,1806,74949];; for n in [4..20] do a[n]:=41*a[n-1]+41*a[n-2] -861*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(861*t^3-41*t^2-41*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(861*x^3-41*x^2-41*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(861*t^3-41*t^2-41*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 861, -41}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(861*t^3-41*t^2-41*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -42*x +902*x^3 -861*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(861*t^3 - 41*t^2 - 41*t + 1).
a(n) = 41*a(n-1) + 41*a(n-2) - 861*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 -42*x + 902*x^3 - 861*x^4). - G. C. Greubel, Apr 27 2019

A162882 Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 44, 1892, 80410, 3416952, 145180728, 6168492330, 262088760780, 11135706433236, 473137249574682, 20102798001348216, 854133737629549608, 36290691560131770762, 1541929835910758016492, 65513979388697887768644
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170763, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[44,1892,80410];; for n in [4..20] do a[n]:=42*a[n-1]+42*a[n-2] -903*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(903*x^3-42*x^2-42*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 903, -42}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -43*x +945*x^3 -903*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(903*t^3 - 42*t^2 - 42*t + 1).
a(n) = 42*a(n-1) + 42*a(n-2) - 903*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 43*x + 945*x^3 - 903*x^4). - G. C. Greubel, Apr 27 2019

A162885 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 45, 1980, 86130, 3746160, 162915390, 7084967670, 308115104220, 13399485132330, 582724430755830, 25341851494598760, 1102080851855063190, 47927918932540448670, 2084316599215116583020, 90643945794494362584930
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170764, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[45,1980,86130];; for n in [4..20] do a[n]:=43*a[n-1]+43*a[n-2] -946*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!(( t^3+ 2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(946*x^3-43*x^2-43*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1-44*x+990*x^3-946*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(946*t^3 - 43*t^2 - 43*t + 1).
a(n) = 43*a(n-1) + 43*a(n-2) - 946*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 44*x + 990*x^3 - 946*x^4). - G. C. Greubel, Apr 28 2019

A162889 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 46, 2070, 92115, 4098600, 182342160, 8112199590, 360902223000, 16056115855560, 714317717862540, 31779155482826400, 1413817266133308960, 62899068010426041240, 2798305588240613272800, 124493325781573753947360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[46,2070,92115];; for n in [4..20] do a[n]:=44*a[n-1]+44*a[n-2] - 990*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 990, -44}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1-45*x+1034*x^3-990*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(990*t^3 - 44*t^2 - 44*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 44*a(n-1) + 44*a(n-2) - 990*a(n-3).
G.f.: (1+x)*(1-x^3)/(1 - 45*x + 1034*x^3 - 990*x^4). (End)

A163207 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636202, 17802288, 498146166, 13939191504, 390048294510, 10914382803996, 305407698579522, 8545958486918244, 239134137088822794, 6691482951706744632, 187241958166564053774, 5239429159586654676168
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[29,812,22736,636202];; for n in [5..20] do a[n]:=27*(a[n-1] +a[n-2]+a[n-3] -14*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-28*x+405*x^4-378*x^5) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(378*t^4-27*t^3-27*t^2 - 27*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{27,27,27,-378}, {1,29, 812,22736,636202}, 20] (* G. C. Greubel, Dec 10 2016 *)
    coxG[{4, 378, -27}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-28*x+405*x^4-378*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
    
  • Sage
    ((1+x)*(1-x^4)/(1-28*x+405*x^4-378*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(378*t^4 - 27*t^3 - 27*t^2 - 27*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 27*(a(n-1) + a(n-2) + a(n-3) -14*a(n-4)).
G.f.: (1+x)*(1-x^4)/(1 - 28*x + 405*x^4 - 378*x^5). (End)

A163208 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731235, 21193200, 614237400, 17802288000, 515959239390, 14953916974920, 433405617680280, 12561286100120520, 364060598322527820, 10551476830837383840, 305810801346502707360, 8863237603561904401440
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[30,870,25230,731235];; for n in [5..20] do a[n]:=28*(a[n-1] + a[n-2]+a[n-3]) -406*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-29*x+434*x^4-406*x^5) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(406*t^4-28*t^3-28*t^2- 28*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{28,28,28,-406}, {1,30, 870,25230,731235}, 20] (* G. C. Greubel, Dec 10 2016 *)
    coxG[{4, 406, -28}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-29*x+434*x^4-406*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
    
  • Sage
    ((1+x)*(1-x^4)/(1-29*x+434*x^4-406*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 28*(a(n-1) + a(n-2) + a(n-3)) - 406*a(n-4).
G.f.: (1+x)*(1-x^4)/(1 - 29*x + 434*x^4 - 406*x^5). (End)

A163214 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 31, 930, 27900, 836535, 25082100, 752044965, 22548807900, 676088221260, 20271372436125, 607803134933490, 18223958540698875, 546414860017738110, 16383333982098029400, 491226816855341457015, 14728612983261055500600
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[31,930,27900,836535];; for n in [5..20] do a[n]:=29*(a[n-1]+ a[n-2] +a[n-3] -15*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    coxG[{4,435,-29}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 24 2016 *)
    CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(435*t^4-29*t^3-29*t^2 - 29*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{29,29,29,-435}, {1,31, 930,27900,836535}, 20] (* G. C. Greubel, Dec 10 2016 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
    
  • Sage
    ((1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
a(n) = 29*(a(n-1) + a(n-2) + a(n-3) - 15*a(n-4)). - G. C. Greubel, Apr 28 2019

A163215 Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 32, 992, 30752, 952816, 29521920, 914703360, 28341043200, 878114994960, 27207394552800, 842990180666400, 26119092121336800, 809270367424023600, 25074322053313752000, 776899354951763496000, 24071343043338616536000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170751, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[32,992,30752,952816];; for n in [5..20] do a[n]:=30*(a[n-1]+a[n-2] +a[n-3]) -465*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-31*x+495*x^4-465*x^5) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(465*t^4-30*t^3-30*t^2 - 30*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{30, 30, 30, -465}, {1, 32,992,30752,952816}, 20] (* G. C. Greubel, Dec 10 2016 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-31*x+495*x^4-465*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
    
  • Sage
    ((1+x)*(1-x^4)/(1-31*x+495*x^4-465*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^4 - 30*t^3 - 30*t^2 - 30*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 30*(a(n-1) + a(n-2) + a(n-3)) - 465*a(n-4).
G.f.: (1+x)*(1-x^4)/(1 - 31*x + 495*x^4 - 465*x^5). (End)

A163216 Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 33, 1056, 33792, 1080816, 34569216, 1105674768, 35364307968, 1131105025776, 36177678932736, 1157120181575952, 37009757234816256, 1183733679862288368, 37860973146888460800, 1210959282493490855952, 38731766829339020895744
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170752, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[33,1056,33792,1080816];; for n in [5..20] do a[n]:=31*(a[n-1]+ a[n-2]+a[n-3]-16*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(496*t^4-31*t^3-31*t^2 - 31*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{31,31,31,-496}, {1,33, 1056,33792,1080816}, 20] (* G. C. Greubel, Dec 11 2016 *)
    coxG[{4, 496, -31}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5)) \\ G. C. Greubel, Dec 11 2016, modified Apr 28 2019
    
  • Sage
    ((1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(496*t^4 - 31*t^3 - 31*t^2 - 31*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 31*(a(n-1) + a(n-2) + a(n-3) - 16*a(n-4)).
G.f.: (1+x)*(1-x^4)/(1 - 32*x + 527*x^4 - 496*x^5). (End)
Previous Showing 81-90 of 2314 results. Next