cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A123620 Expansion of (1 + x + x^2) / (1 - 3*x - 3*x^2).

Original entry on oeis.org

1, 4, 16, 60, 228, 864, 3276, 12420, 47088, 178524, 676836, 2566080, 9728748, 36884484, 139839696, 530172540, 2010036708, 7620627744, 28891993356, 109537863300, 415289569968, 1574482299804, 5969315609316, 22631393727360, 85802128010028, 325300565212164
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2006

Keywords

Comments

From Johannes W. Meijer, Aug 14 2010: (Start)
A berserker sequence, see A180141. For the corner squares 16 A[5] vectors with decimal values between 3 and 384 lead to this sequence. These vectors lead for the side squares to A180142 and for the central square to A155116.
This sequence belongs to a family of sequences with GF(x) = (1+x+k*x^2)/(1-3*x+(k-4)*x^2). Berserker sequences that are members of this family are 4*A055099(n) (k=2; with leading 1 added), A123620 (k=1; this sequence), A000302 (k=0), 4*A179606 (k=-1; with leading 1 added) and A180141 (k=-2). Some other members of this family are 4*A003688 (k=3; with leading 1 added), 4*A003946 (k=4; with leading 1 added), 4*A002878 (k=5; with leading 1 added) and 4*A033484 (k=6; with leading 1 added).
(End)
a(n) is the number of length n sequences on an alphabet of 4 letters that do not contain more than 2 consecutive equal letters. For example, a(3)=60 because we count all 4^3=64 words except: aaa, bbb, ccc, ddd. - Geoffrey Critzer, Mar 12 2014

Crossrefs

Column 4 in A265584.

Programs

  • Magma
    [1] cat [Round(((2^(1-n)*(-(3-Sqrt(21))^(1+n) + (3+Sqrt(21))^(1+n))))/(3*Sqrt(21))): n in [1..50]]; // G. C. Greubel, Oct 26 2017
  • Mathematica
    nn=25;CoefficientList[Series[(1-z^(m+1))/(1-r z +(r-1)z^(m+1))/.{r->4,m->2},{z,0,nn}],z] (* Geoffrey Critzer, Mar 12 2014 *)
    CoefficientList[Series[(1 + x + x^2)/(1 - 3 x - 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 14 2014 *)
    LinearRecurrence[{3,3},{1,4,16},30] (* Harvey P. Dale, Jul 14 2023 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+x+x^2)/(1-3*x-3*x^2)) \\ G. C. Greubel, Oct 16 2017
    

Formula

a(0)=1, a(1)=4, a(2)=16, a(n)=3*a(n-1)+3*a(n-2) for n>2. - Philippe Deléham, Sep 18 2009
a(n) = ((2^(1-n)*(-(3-sqrt(21))^(1+n) + (3+sqrt(21))^(1+n)))) / (3*sqrt(21)) for n>0. - Colin Barker, Oct 17 2017

A180142 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 + x - x^2)/(1 - 3*x - 3*x^2).

Original entry on oeis.org

1, 4, 14, 54, 204, 774, 2934, 11124, 42174, 159894, 606204, 2298294, 8713494, 33035364, 125246574, 474845814, 1800277164, 6825368934, 25876938294, 98106921684, 371951579934, 1410175504854, 5346381254364, 20269670277654, 76848154596054, 291353474621124
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 or 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140.
The sequence above corresponds to 16 A[5] vectors with decimal values between 3 and 384. These vectors lead for the corner squares to A123620 and for the central square to A155116.
This sequence appears among the members of a family of sequences with g.f. (1 + x - k*x^2)/(1 - 3*x + (k-4)*x^2). Berserker sequences that are members of this family are 4*A007482 (k=2; with leading 1 added), A180142 (k=1; this sequence), A000302 (k=0), A180140 (k=-1) and 4*A154964 (k=-2; n>=1 and a(0)=1). Some other members of this family are 2*A180148 (k=3; with leading 1 added), 4*A025192 (k=4; with leading 1 added), 2*A005248 (k=5; with leading 1 added) and A123932 (k=6).

Crossrefs

Cf. A180141 (corner squares), A180140 (side squares), A180147 (central square).

Programs

  • Maple
    with(LinearAlgebra): nmax:=23; m:=2; A[5]:=[0,0,0,0,0,0,0,1,1]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
    # second Maple program:
    a:= n-> ceil((<<0|1>, <3|3>>^n. <<2/3, 4>>)[1,1]):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 14 2021
  • Mathematica
    LinearRecurrence[{3, 3}, {1, 4, 14}, 26] (* Jean-François Alcover, Jan 18 2025 *)

Formula

G.f.: (1 + x - x^2)/(1 - 3*x - 3*x^2).
a(n) = 3*a(n-1) + 3*a(n-2) for n >= 2 with a(0)=1, a(1)=4 and a(2)=14.
a(n) = (6-2*A)*A^(-n-1)/21 + (6-2*B)*B^(-n-1)/21 with A=(-3+sqrt(21))/6 and B=(-3-sqrt(21))/6.
Lim_{k->infinity} a(2*n+k)/a(k) = 2*A000244(n)/(A003501(n) - A004254(n)*sqrt(21)) for n >= 1.
Lim_{k->infinity} a(2*n-1+k)/a(k) = 2*A000244(n)/(A004253(n)*sqrt(21) - 3*A030221(n-1)) for n >= 1.

A370173 Riordan array (1-x-x^2, x*(1+x)).

Original entry on oeis.org

1, -1, 1, -1, 0, 1, 0, -2, 1, 1, 0, -1, -2, 2, 1, 0, 0, -3, -1, 3, 1, 0, 0, -1, -5, 1, 4, 1, 0, 0, 0, -4, -6, 4, 5, 1, 0, 0, 0, -1, -9, -5, 8, 6, 1, 0, 0, 0, 0, -5, -15, -1, 13, 7, 1, 0, 0, 0, 0, -1, -14, -20, 7, 19, 8, 1, 0, 0, 0, 0, 0, -6, -29, -21, 20, 26, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 27 2024

Keywords

Comments

Triangle T(n,k) read by rows : matrix product of A155112*A130595.
Triangle T(n,k), read by rows, given by [-1, 2, -1/2, -1/2, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Triangle T(n,k) begins:
  1;
 -1,  1;
 -1,  0,  1;
  0, -2,  1,  1;
  0, -1, -2,  2, 1;
  0,  0, -3, -1, 3, 1;
...
		

Crossrefs

Programs

  • Python
    from functools import cache
    @cache
    def T(n, k):
        if k > n: return 0
        if n == 0: return 1
        if k == 0: return -1 if n == 1 or n == 2 else 0
        return T(n-1, k-1) + T(n-2, k-1)
    for n in range(9):
        print([T(n, k) for k in range(n+1)])  # Peter Luschny, Feb 28 2024

Formula

T(n,k) = T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = -1, T(n,0) = 0 for n>2, T(n,k) = 0 if k>n.
T(n,k) = Sum_{j = k..n} A155112(n,j)*A130595(j,k).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A155020(n), A155116(n), A155117(n), A155119(n), A155127(n), A155130(n), A155132(n), A155144(n), A155157(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Previous Showing 11-13 of 13 results.