cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A182962 E.g.f. satisfies: A(x) = exp( x/(1 - x*A'(x)/A(x)) ).

Original entry on oeis.org

1, 1, 3, 25, 433, 12501, 529531, 30495613, 2272643745, 211761416233, 24055076979091, 3267213865097601, 522451410607362193, 97120159467079471165, 20765771676360919883403, 5060640084128464622069221
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 25*x^3/3! + 433*x^4/4! +...
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 621*x^6 + 5236*x^7 + 49680*x^8 +...+ A088716(n)*x^(n+1) +...
...
The coefficients of [x^n/n!] in the powers of e.g.f. A(x) begin:
A^1: [(1),(1), 3, 25, 433, 12501, 529531, 30495613, ...];
A^2: [1,(2),(8), 68, 1120, 30832, 1260544, 70737536, ...];
A^3: [1, 3,(15),(135), 2169, 57303, 2261439, 123523515, ...];
A^4: [1, 4, 24,(232),(3712), 94944, 3622336, 192461056, ...];
A^5: [1, 5, 35, 365, (5905),(147625), 5460475, 282185825, ...];
A^6: [1, 6, 48, 540, 8928, (220176),(7926336), 398625408, ...];
A^7: [1, 7, 63, 763, 12985, 318507,(11210479),(549313471), ...];
A^8: [1, 8, 80, 1040, 18304, 449728, 15551104,(743759360), ...];
...
In the above table, the coefficients in parenthesis are related by:
1*1 = 1; 8 = 2^2*2; 135 = 3^2*15; 3712 = 4^2*232; 147625 = 5^2*5905;
this illustrates: [x^n/n!] A(x)^n = n^2*[x^(n-1)/(n-1)!] A(x)^n.
...
Also note that the main diagonal in the above table begins:
[1*1, 2*1, 3*5, 4*58, 5*1181, 6*36696, 7*1601497, 8*92969920, ...];
this illustrates: [x^n/n!] A(x)^(n+1) = (n+1)*A156326(n).
...
Let G(x) denote the e.g.f. of A156326:
G(x) = 1 + x + 5*x^2/2! + 58*x^3/3! + 1181*x^4/4! + 36696*x^5/5! +...
then G(x) satisfies: G(x) = A(x*G(x)) and A(x) = G(x/A(x)) where
G(x) = exp( Sum_{n>=1} n^2 * A156326(n-1)*x^n/n! ).
...
		

Crossrefs

Programs

  • Mathematica
    m = 16; A[_] = 1;
    Do[A[x_] = Exp[x/(1 - x A'[x]/A[x])] + O[x]^m, {m}];
    CoefficientList[A[x], x] Range[0, m-1]! (* Jean-François Alcover, Oct 29 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(x/(1 - x*deriv(A)/A+x*O(x^n))));n!*polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0);A[#A]=((#A-1)*Vec(Ser(A)^(#A-1))[#A-1]-Vec(Ser(A)^(#A-1))[#A])/(#A-1));n!*A[n+1]}

Formula

E.g.f.: A(x) = exp(x*F(x)) where F(x) = 1 + x*F(x)*d/dx[x*F(x)] is the o.g.f. of A088716.
E.g.f. satisfies: [x^n/n!] A(x)^n = n^2*[x^(n-1)/(n-1)!] A(x)^n for n>=1.
E.g.f. satisfies: [x^n/n!] A(x)^(n+1) = (n+1)*A156326(n) for n>=0.
E.g.f.: A(x) = x/Series_Reversion(x*G(x)) where A(x*G(x)) = G(x) is the e.g.f. of A156326, which satisfies:
. G(x) = exp( Sum_{n>=1} n^2 * A156326(n-1)*x^n/n! ).
a(n) ~ c * (n!)^2 * n, where c = 0.21795078944715106549... (see A238223). - Vaclav Kotesovec, Feb 22 2014

A143925 E.g.f. A(x) satisfies A(x) = exp(x + x^2*A'(x)).

Original entry on oeis.org

1, 1, 3, 25, 397, 10061, 369061, 18415825, 1197307161, 98248658905, 9928361978281, 1211474323983221, 175635827999270629, 29845580180227776277, 5876070628821158239293, 1327055145216772464211321, 340793190982323564066166321, 98752652958563191504390390577
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=exp(x+x^2*deriv(A)+x*O(x^n)));n!*polcoeff(A,n)}

Formula

a(n) ~ c * (n!)^2, where c = 0.80799863989712622039... - Vaclav Kotesovec, Feb 22 2014
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (1 + k) * k * binomial(n-1,k) * a(k) * a(n-1-k). - Seiichi Manyama, Jul 24 2025

A238223 Decimal expansion of a constant related to A088716.

Original entry on oeis.org

2, 1, 7, 9, 5, 0, 7, 8, 9, 4, 4, 7, 1, 5, 1, 0, 6, 5, 4, 9, 2, 8, 2, 2, 8, 2, 2, 4, 4, 2, 3, 1, 9, 8, 2, 0, 8, 8, 6, 6, 0, 4, 5, 3, 9, 5, 6, 2, 9, 3, 9, 9, 6, 3, 4, 8, 1, 2, 3, 4, 0, 1, 7, 6, 2, 6, 5, 8, 7, 3, 3, 6, 2, 9, 2, 5, 3, 7, 0, 9, 4, 4, 9, 1, 2, 5, 9, 6, 3, 2, 2, 9, 8, 6, 2, 2, 9, 4, 5, 1, 4, 4, 8, 8, 9, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			0.21795078944715106549282282244231982088...
		

Crossrefs

Formula

Equals lim n->infinity A088716(n)/(n!*n^2).

A156325 E.g.f.: A(x) = exp( Sum_{n>=1} n(n+1)/2 * a(n-1)*x^n/n! ) = Sum_{n>=0} a(n)*x^n/n! with a(0)=1.

Original entry on oeis.org

1, 1, 4, 34, 482, 10056, 286372, 10591372, 491169996, 27826318000, 1887581200256, 150885500428224, 14028718134958936, 1500672248541122944, 182987661921689610000, 25231215606822797450176, 3906382859414378995123088, 674864208557744341737593088, 129369340822722468679389762496
Offset: 0

Views

Author

Paul D. Hanna, Feb 08 2009

Keywords

Examples

			E.g.f: A(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 482*x^4/4! + 10056*x^5/5! +...
log(A(x)) = x + 3*1*x^2/2! + 6*4*x^3/3! + 10*34*x^4/4! + 15*482*x^5/5! +...
such that log(A(x)) = x*A(x) + x^2*A'(x)/2 = d/dx x^2*A(x)/2.
		

Crossrefs

Programs

  • Mathematica
    terms = 19; A[] = 1; Do[A[x] = Exp[x*A[x]+x^2*A'[x]/2] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] * Range[0,terms-1]! (* Stefano Spezia, Aug 04 2025 *)
  • PARI
    {a(n) = if(n==0,1,n!*polcoeff(exp(sum(k=1,n,k*(k+1)/2*a(k-1)*x^k/k!)+x*O(x^n)),n))}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    {a(n) = if(n==0,1,sum(k=1,n,k*(k+1)/2*binomial(n-1,k-1)*a(k-1)*a(n-k)))}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); for(i=1,n, A = exp(deriv(x^2*A/2 +x^2*O(x^n)))); n!*polcoeff(A,n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Dec 17 2017
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j/2)*binomial(i-1, j)*v[j+1]*v[i-j])); v; \\ Seiichi Manyama, Jul 25 2025

Formula

a(n) = Sum_{k=1..n} k(k+1)/2 * C(n-1,k-1)*a(k-1)*a(n-k) for n>0, with a(0)=1.
E.g.f. A(x) satisfies A(x) = exp( d/dx x^2*A(x)/2 ). - Paul D. Hanna, Dec 17 2017
a(n) ~ c * n!^2 * n^3 / 2^n, where c = 0.1298868467763756870740708... - Vaclav Kotesovec, Aug 05 2025

A385920 E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^3*A''(x)).

Original entry on oeis.org

1, 1, 3, 34, 1085, 76176, 10075567, 2259237184, 795650626521, 415436957516800, 307467426910853051, 311183690415601457664, 418253671031607891057877, 728624453608629352377831424, 1611758187912750506708147828775, 4448533739124778044473142239512576
Offset: 0

Views

Author

Seiichi Manyama, Jul 12 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 16; A[] = 1; Do[A[x] = Exp[x*A[x]+x^3*A''[x]] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] * Range[0,terms-1]! (* Stefano Spezia, Aug 04 2025 *)
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+sum(k=1, 2, stirling(2, k, 1)*j^k))*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^3) * binomial(n-1,k) * a(k) * a(n-1-k).

A385921 E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^4*A'''(x)).

Original entry on oeis.org

1, 1, 3, 16, 509, 66216, 24639367, 21043463344, 35690424280569, 108571039785256960, 549371080081204026731, 4363111116508031602712064, 51938511093491129409954627637, 892615592639462586040781503568896, 21469194967164193484102627607895188975, 703974996795045871424921458192403079479296
Offset: 0

Views

Author

Seiichi Manyama, Jul 12 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 16; A[] = 1; Do[A[x] = Exp[x*A[x]+x^4*A'''[x]] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] * Range[0,terms-1]! (* Stefano Spezia, Aug 04 2025 *)
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+sum(k=1, 3, stirling(3, k, 1)*j^k))*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + 2*k - 3*k^2 + k^3) * binomial(n-1,k) * a(k) * a(n-1-k).

A385922 E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^5*A''''(x)).

Original entry on oeis.org

1, 1, 3, 16, 125, 16296, 11929927, 30230776864, 203634850471929, 3082625458810336000, 93280255561776693446891, 5173509703646410927969711104, 491814532626655136406839912703157, 75968624000349445912469318939348786176, 18252829396078618393615717880609268502659375
Offset: 0

Views

Author

Seiichi Manyama, Jul 12 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 15; A[] = 1; Do[A[x] = Exp[x*A[x]+x^5*A''''[x]] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] * Range[0,terms-1]! (* Stefano Spezia, Aug 04 2025 *)
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+sum(k=1, 4, stirling(4, k, 1)*j^k))*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 - 6*k + 11*k^2 - 6*k^3 + k^4) * binomial(n-1,k) * a(k) * a(n-1-k).

A385939 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^2) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 5, 88, 3893, 352536, 57322537, 15277686880, 6239711818377, 3708478187297920, 3079046917046731661, 3455392385954013825024, 5100835934217411940938685, 9682263835381845999967986688, 23180826149963609282826172967025, 68850271609123855250628849758027776
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j^2)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( x * A(x) + x^2 * (d/dx A(x)) + x^3 * (d^2/dx^2 A(x)) ).

A385940 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^3) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 5, 148, 17189, 5676336, 4326290857, 6602349049360, 18222895109730537, 84299882148193513600, 616234715187848381357261, 6792153358905298302629935104, 108647409624774384033524243233165, 2443481854821246436998727854436139008, 75225062360951292682727255438183855480625
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j^3)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( x*A(x) + x*Sum_{k=1..3} Stirling2(3,k) * x^k * (d^k/dx^k A(x)) ).

A385941 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^4) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 5, 268, 88997, 114813696, 431933720137, 3924557764490560, 75445736579647162857, 2782590090487142758353280, 182621397948270167786531824781, 20092371907364577184989521575079424, 3530551258386563793887714321816262653965, 951815440668013126114976449397609983348430848
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j^4)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( x*A(x) + x*Sum_{k=1..4} Stirling2(4,k) * x^k * (d^k/dx^k A(x)) ).
Showing 1-10 of 19 results. Next