A385942
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^5) * binomial(n-1,k) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 5, 508, 497861, 2554041696, 47918955042217, 2608995595530944320, 350836859825187730934697, 103472315352121087796983183360, 61101436986101317921145771113951181, 67212924933426575369862458525709786073344, 129898118403746997254471428114728554653243564525
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j^5)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
A385943
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^6) * binomial(n-1,k) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 5, 988, 2888933, 59194266336, 5550172939486537, 1812719786900514856960, 1706146365658760367161728617, 4025335006744077207541517795929600, 21392361120121469487882204135345762936461, 235316442953945260569915546964215106936729204224
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j^6)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
A385923
E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^6*A'''''(x)).
Original entry on oeis.org
1, 1, 3, 16, 125, 1296, 949927, 4800957904, 96864153387129, 5860087724767012480, 886162470100464297115691, 294792579950929452096468136704, 196126682670165049397384798842463797, 242323538289386581241948100813652397771776, 523949046624700150687300336366625589891821933775
Offset: 0
-
terms = 15; A[] = 1; Do[A[x] = Exp[x*A[x]+x^6*A'''''[x]] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Aug 04 2025 *)
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+sum(k=1, 5, stirling(5, k, 1)*j^k))*binomial(i-1, j)*v[j+1]*v[i-j])); v;
A161968
E.g.f. L(x) satisfies: L(x) = x*exp(x*d/dx L(x)), where L(x) is the logarithm of e.g.f. of A161967.
Original entry on oeis.org
1, 2, 15, 232, 5905, 220176, 11210479, 743759360, 62179950753, 6387468716800, 790466735915791, 115974842104378368, 19906425428056709425, 3952505003715017695232, 899034956269244372091375, 232282033898506324396343296, 67660142460130946247667502401
Offset: 1
E.g.f.: L(x) = x + 2*x^2/2! + 15*x^3/3! + 232*x^4/4! + 5905*x^5/5! +...
where exp(L(x)) = exp(x*exp(x*L'(x))) = e.g.f. of A161967:
exp(L(x)) = 1 + x + 3*x^2/2! + 22*x^3/3! + 317*x^4/4! + 7596*x^5/5! +...
and exp(x*L'(x)) = 1 + x + 5*x^2/2! + 58*x^3/3! + 1181*x^4/4! + 36696*x^5/5! +...+ A156326(n)*x^n/n! +...
RELATED EXPRESSIONS.
E.g.f.: A(x) = 1 + 2*x + 15*x^2/2! + 232*x^3/3! + 5905*x^4/4! +...
where
A(x) = d/dx x*exp(x*A(x)) = exp(x*A(x)) * (1 + x*A(x) + x^2*A'(x)) with
exp(x*A(x)) = 1 + x + 5*x^2/2! + 58*x^3/3! + 1181*x^4/4! + 36696*x^5/5! + 1601497*x^6/6! + 92969920*x^7/7! +...+ A156326(n)*x^n/n! +...
-
{a(n)=local(L=x+x^2);for(i=1,n,L=x*exp(x*deriv(L)+O(x^n)));n!*polcoeff(L,n)}
for(n=1,30,print1(a(n),", "))
A385979
a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1) * binomial(k+2,2) * binomial(n-1,k) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 7, 145, 6449, 522096, 69506737, 14186121706, 4212887224905, 1747635451186240, 979909591959562571, 722787600597422326704, 685585597413868516073953, 820283211774547803576454720, 1217648676024408903145299884925, 2210504358495882876855897821031376
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (j+1)*binomial(j+2, 2)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
A385980
a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1) * binomial(k+3,3) * binomial(n-1,k) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 9, 295, 24921, 4504516, 1543745107, 919392117722, 890353538984905, 1330464112593541120, 2940642877993896450701, 9284167814032856189142864, 40666099850492306669400356041, 241073945237343019120798232332320, 1893421587381601800604423881821405775
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (j+1)*binomial(j+3, 3)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
A385981
a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1) * binomial(k+4,4) * binomial(n-1,k) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 11, 526, 75981, 27017601, 20599793857, 30432196412318, 80590529100023889, 359767027014797719000, 2575966649397129017224661, 28392489655027195386265889544, 465411261102140455922541427819489, 11017701081052339904298545720453122836, 367264434033142995461894471693185212854475
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (j+1)*binomial(j+4, 4)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
A385982
a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1) * binomial(k+5,5) * binomial(n-1,k) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 13, 856, 195525, 124248221, 188647130983, 611439299390984, 3879035706651051809, 44966039381652540837592, 900671755790709615794856671, 29761825253146859538914816137428, 1560353636451919718380582807368070417, 125541398272463750591414559674298911706684
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (j+1)*binomial(j+5, 5)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
A156327
E.g.f.: A(x) = exp( Sum_{n>=1} n*(n+3)/2 * a(n-1)*x^n/n! ) = Sum_{n>=0} a(n)*x^n/n! with a(0)=1.
Original entry on oeis.org
1, 2, 14, 194, 4280, 134232, 5587408, 294882464, 19102334112, 1482726089600, 135370060595264, 14325189014356992, 1736329123715436544, 238698935851482530816, 36911830664814417907200, 6375425555384677316100608, 1222423907917065757088181248, 258802786174190320917263867904
Offset: 0
E.g.f: A(x) = 1 + 2*x + 14*x^2/2! + 194*x^3/3! + 4280*x^4/4! + 134232*x^5/5! +...
log(A(x)) = 2*1*x + 5*2*x^2/2! + 9*14*x^3/3! + 14*194*x^4/4! + 20*4280*x^5/5! +...
-
terms = 18; A[] = 1; Do[A[x] = Exp[2x*A[x]+x^2*A'[x]/2] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] * Range[0,terms-1]! (* Stefano Spezia, Aug 04 2025 *)
-
{a(n)=if(n==0,1,n!*polcoeff(exp(sum(k=1,n,k*(k+3)/2*a(k-1)*x^k/k!)+x*O(x^n)),n))}
-
{a(n)=if(n==0,1,sum(k=1,n,k*(k+3)/2*binomial(n-1,k-1)*a(k-1)*a(n-k)))}
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(2+j/2)*binomial(i-1, j)*v[j+1]*v[i-j])); v; \\ Seiichi Manyama, Jul 25 2025