cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A387150 Decimal expansion of the smallest dihedral angle, in radians, in a gyroelongated square pyramid (Johnson solid J_10).

Original entry on oeis.org

1, 8, 1, 2, 2, 8, 2, 8, 8, 2, 9, 9, 2, 2, 3, 8, 6, 8, 1, 3, 2, 2, 5, 6, 2, 1, 2, 3, 1, 2, 1, 9, 8, 3, 9, 5, 2, 7, 0, 8, 9, 1, 7, 0, 7, 1, 9, 8, 2, 5, 8, 4, 0, 6, 6, 3, 2, 0, 3, 7, 5, 6, 0, 9, 8, 1, 4, 0, 1, 5, 8, 8, 7, 2, 7, 3, 9, 5, 1, 3, 0, 8, 4, 5, 8, 9, 3, 7, 3, 8
Offset: 1

Views

Author

Paolo Xausa, Aug 19 2025

Keywords

Comments

This is the dihedral angle between the square face and a triangular face.

Examples

			1.81228288299223868132256212312198395270891707198...
		

Crossrefs

Cf. other J_10 dihedral angles: A156546, A387148, A387149.
Cf. A179638 (J_10 volume), A374948 (J_10 surface area).
Cf. A010466.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[1 - Sqrt[8]/3]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J10", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-sqrt(1 - 2*sqrt(2)/3)) = arccos(-sqrt(1 - A010466/3)).

A087125 Indices k of hex numbers H(k) that are also triangular.

Original entry on oeis.org

0, 5, 54, 539, 5340, 52865, 523314, 5180279, 51279480, 507614525, 5024865774, 49741043219, 492385566420, 4874114620985, 48248760643434, 477613491813359, 4727886157490160, 46801248083088245, 463284594673392294, 4586044698650834699, 45397162391834954700
Offset: 0

Views

Author

Eric W. Weisstein, Aug 14 2003

Keywords

Comments

From the law of cosines, the non-Pythagorean triple {a(n), a(n)+1=A253475(n+1), A072256(n+1)} forms a near-isosceles triangle with the angle bounded by the consecutive sides equal to the regular tetrahedron's central angle (see A156546 and A247412). This implies also that a(n) are those numbers k such that (16/3)*A000217(k)+1 is a perfect square. - Federico Provvedi, Apr 04 2023

Crossrefs

Programs

  • Magma
    [Round((-4-(5-2*Sqrt(6))^n*(-2+Sqrt(6)) + (2+Sqrt(6))*(5 + 2*Sqrt(6))^n)/8): n in [0..25]]; // G. C. Greubel, Nov 04 2017
  • Mathematica
    CoefficientList[Series[(-x^2+5*x)/((1-x)*(1-10*x+x^2)), {x, 0, 25}], x] (* G. C. Greubel, Nov 04 2017 *)
    LinearRecurrence[{11,-11,1},{0,5,54},30] (* Harvey P. Dale, Jun 14 2022 *)
    Table[(x Sqrt[z^(2 n + 1) + z^-(2 n + 1) - 2] - 4) / 8 //. {x -> Sqrt[2], y -> Sqrt[3], z -> (5 + 2 x y)}, {n, 0, 100}] // Round (* Federico Provvedi, Apr 16 2023 *)
  • PARI
    concat(0, Vec(x*(x-5)/((x-1)*(x^2-10*x+1)) + O(x^50))) \\ Colin Barker, Jun 23 2015
    

Formula

G.f.: (-x^2+5*x)/((1-x)*(1-10*x+x^2)).
a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3) for n > 2. - Colin Barker, Jun 23 2015
a(n) = (-4 - (5-2*sqrt(6))^n*(-2 + sqrt(6)) + (2+sqrt(6))*(5+2*sqrt(6))^n)/8. - Colin Barker, Mar 05 2016
a(n) = 10*a(n-1) - a(n-2) + 4 for n > 1. - Charlie Marion, Feb 14 2023
a(n) = ((x^(n+1)+1)*(x^n-1))/(2*x^n*(x-1)), with x=5+2*sqrt(6). - Federico Provvedi, Apr 04 2023
a(n) = sqrt(3*A161680(A054318(n+1)) + 1/4) - 1/2 = floor(sqrt(3*A000217(A054318(n+1)-1) + 1/4)). - Federico Provvedi, Apr 16 2023

A378389 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a tetrakis hexahedron.

Original entry on oeis.org

2, 4, 9, 8, 0, 9, 1, 5, 4, 4, 7, 9, 6, 5, 0, 8, 8, 5, 1, 6, 5, 9, 8, 3, 4, 1, 5, 4, 5, 6, 2, 1, 8, 0, 2, 4, 6, 1, 5, 5, 6, 5, 8, 8, 0, 8, 2, 5, 9, 7, 9, 3, 4, 3, 8, 1, 0, 9, 3, 3, 8, 4, 7, 3, 5, 9, 4, 3, 0, 3, 9, 3, 1, 4, 7, 4, 5, 8, 7, 9, 0, 9, 9, 1, 5, 2, 1, 7, 9, 8
Offset: 1

Views

Author

Paolo Xausa, Nov 27 2024

Keywords

Comments

The tetrakis hexahedron is the dual polyhedron of the truncated octahedron.

Examples

			2.498091544796508851659834154562180246155658808...
		

Crossrefs

Cf. A378388 (surface area), A374359 (volume - 1), A010532 (inradius*10), A179587 (midradius + 1).
Cf. A156546 and A195698 (dihedral angles of a truncated octahedron), A195729.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-4/5], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["TetrakisHexahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-4/5).
Equals 2*A195729. - Amiram Eldar, Nov 27 2024

A289502 Mean width of the regular tetrahedron of unit length.

Original entry on oeis.org

9, 1, 2, 2, 6, 0, 1, 7, 1, 9, 5, 4, 0, 8, 9, 0, 9, 4, 7, 4, 3, 7, 1, 6, 6, 6, 1, 1, 6, 6, 3, 5, 3, 6, 3, 3, 0, 2, 5, 0, 5, 7, 0, 2, 5, 8, 4, 0, 8, 9, 9, 5, 6, 9, 0, 6, 8, 0, 9, 2, 5, 5, 2, 9, 6, 6, 9, 9, 7, 8, 8, 6, 9, 8, 3, 8, 3, 6, 6, 2, 9, 6, 9, 4, 6, 8, 2
Offset: 0

Views

Author

R. J. Mathar, Jul 07 2017

Keywords

Crossrefs

Programs

  • Maple
    x := 3*arccos(-1/3)/2/Pi ; evalf(%) ;
  • Mathematica
    RealDigits[3 ArcCos[-1/3]/(2*Pi), 10, 87][[1]] (* Indranil Ghosh, Jul 08 2017 *)

Formula

A336199 Decimal expansion of the distance between the centers of two unit-radius spheres such that the volume of intersection is equal to the sum of volumes of the two nonoverlapping parts.

Original entry on oeis.org

4, 5, 2, 1, 4, 7, 4, 2, 7, 5, 7, 8, 4, 1, 5, 9, 8, 1, 8, 2, 8, 6, 1, 0, 8, 3, 1, 1, 8, 3, 1, 8, 1, 2, 6, 3, 2, 4, 7, 5, 0, 9, 1, 5, 3, 2, 5, 9, 6, 7, 7, 5, 6, 6, 8, 0, 7, 7, 6, 7, 0, 4, 5, 7, 6, 0, 0, 6, 8, 4, 5, 6, 0, 5, 4, 2, 1, 8, 0, 4, 2, 8, 7, 9, 5, 8, 5
Offset: 0

Views

Author

Amiram Eldar, Jul 11 2020

Keywords

Comments

Solution to the three-dimensional version of Mrs. Miniver's problem.
The intersection volume is equal to 2/3 of the volume of each sphere, i.e., 8*Pi/9.

Examples

			0.452147427578415981828610831183181263247509153259677...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4 * Sin[ArcCos[-1/3]/3 - Pi/6], 10, 100][[1]]

Formula

Equals 4 * sin(arccos(-1/3)/3 - Pi/6).
The smaller of the two positive roots of the equation x^3 - 12*x + 16/3 = 0.
Previous Showing 11-15 of 15 results.