cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A156920 Triangle of the normalized A142963 and A156919 sequences.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 18, 1, 1, 37, 129, 58, 1, 1, 83, 646, 877, 179, 1, 1, 177, 2685, 8030, 5280, 543, 1, 1, 367, 10002, 56285, 82610, 29658, 1636, 1, 1, 749, 34777, 335162, 919615, 756218, 159742, 4916, 1
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Comments

The originator sequences are A142963 and A156919.
The Flower Triangle seems to be an appropriate name for the triangular array of this sequence. The zero patterns of the Flower Polynomials of the first, see A156921, the second, see A156925, the third, see A156927, and the fourth kind, see A156933, look like flowers.
The first Maple program generates the Flower Triangle sequence.
The second program generates the Right Hand Columns sequences and the third one generates the Left Hand Column sequences. For an explanation of these two algorithms see A142963.

Examples

			The first few rows of the triangle are:
  [1]
  [1, 1]
  [1, 5, 1]
  [1, 15, 18, 1]
  [1, 37, 129, 58, 1]
  [1, 83, 646, 877, 179, 1]
		

Crossrefs

Originator sequences A142963, A156919.
Related sequences A156921, A156925, A156927, A156933.
Left hand column sequences A050488, A142965, A142966, A142968.
Right hand column sequences A000340, A156922, A156923, A156924.
Row sums A014307(n+1).

Programs

  • Maple
    A156920 := proc(n,m): if n=m then 1; elif m=0 then 1 ; elif m<0 or m>n then 0; else (m+1)*procname(n-1, m)+(2*n-2*m+1)*procname(n-1, m-1) ; end if; end proc: seq(seq(A156920(n, m), m=0..n), n=0..8);
    RHCnr:=5; RHCmax:=10; RHCend:=RHCnr+RHCmax: for k from RHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!) *x^p/(1-4*x)^(p+1),p=0..k)/(((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); RHC[k-RHCnr+1]:= coeff(fx,x,k-RHCnr)/2^(k-RHCnr) end do: a:=n-> RHC[n]: seq(a(n), n=1..RHCend-RHCnr);
    LHCnr:=5; LHCmax:=10: LHCend:=LHCnr+LHCmax: for k from LHCnr to LHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!)*x^p/(1-4*x)^(p+1),p=0..k)/ (((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); for n from 0 to nmax do d[n]:= coeff(fx,x,n)/2^n end do: LHC[n]:=d[LHCnr-1] end do: a:=n-> LHC[n]: seq(a(n), n=LHCnr..LHCend-1);
  • Mathematica
    T[, 0] = 1; T[n, n_] = 1; T[n_, m_] := T[n, m] = (m + 1)*T[n - 1, m] + (2*n - 2*m + 1)*T[n - 1, m - 1];
    Table[T[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)

Formula

T(n,m) = (m+1)*T(n-1,m) + (2*n-2*m+1)*T(n-1,m-1) with T(n,m=0) = 1 and T(n,n) = 1, n>=0 and 0 <= m <= n.
From Peter Bala, Jul 22 2012: (Start)
T(n,k) = 1/(2^(n-k))*A156919(n,k).
E.g.f.: 1 + t*x + (t+t^2)*x^2/2! + (t+5*t^2+t^3)*x^3/3! + ... = sqrt(E(x,2*t)), where E(x,t) = (1-t)*exp(x*t)/(exp(x*t)-t*exp(x)) = 1 + t*x + (t+t^2)*x^2/2! + (t+4*t^2+t^3)*x^3/3! + ... is the e.g.f. for the Eulerian numbers A008292.
The row polynomials R(n,x) satisfy 1/sqrt(1-2*x)*(x*d/dx)^n(1/sqrt(1-2*x)) = R(n,x)/(1-2*x)^(n+1). (End)

Extensions

Minor edits by Johannes W. Meijer, Sep 28 2011

A142963 Triangle read by rows, coefficients of the polynomials P(k, x) = (1/2) Sum_{p=0..k-1} Stirling2(k, p+1)*x^p*(1-4*x)^(k-1-p)*(2*p+2)!/(p+1)!.

Original entry on oeis.org

1, 1, 2, 1, 10, 4, 1, 30, 72, 8, 1, 74, 516, 464, 16, 1, 166, 2584, 7016, 2864, 32, 1, 354, 10740, 64240, 84480, 17376, 64, 1, 734, 40008, 450280, 1321760, 949056, 104704, 128, 1, 1498, 139108, 2681296, 14713840, 24198976, 10223488, 629248, 256, 1, 3030, 462264, 14341992
Offset: 1

Views

Author

Wolfdieter Lang, Sep 15 2008

Keywords

Comments

Previous name: Table of coefficients of row polynomials of certain o.g.f.s.
The o.g.f.s G(k, x) for the k-family of sequences S(k, n):= Sum_{p=0..n} p^k*binomial(2*p, p)*binomial(2*(n-p), n-p), k=0,1,... (convolution of two sequences involving the central binomial coefficients) are 1/(1-4*x) for k=0 and 2*x*P(k, x)/(1-4*x)^(k+1) for k=1,2,..., with the row polynomials P(k, x) = Sum_{m=0..k-1} a(n,m)*x^m).
The author was led to compute the sums S(k, n) by a question asked by M. Greiter, Jun 27 2008.
In order to keep the index k>=1 of Sigma(k, n) also for the polynomials P(k, x), their degree is then k-1.

Examples

			Triangle starts:
[1]
[1,   2]
[1,  10,     4]
[1,  30,    72,      8]
[1,  74,   516,    464,      16]
[1, 166,  2584,   7016,    2864,     32]
[1, 354, 10740,  64240,   84480,  17376,     64]
[1, 734, 40008, 450280, 1321760, 949056, 104704, 128]
...
P(3,x) = 1+10*x+4*x^2.
G(3,x) = 2*x*(1+10*x+4*x^2)/(1-4*x)^4.
		

Crossrefs

Left hand column sequences 2*A142964, 4*A142965, 8*A142966, 16*A142968.
Row sums A142967.
From Johannes W. Meijer, Feb 20 2009: (Start)
A156919 and this sequence can be mapped onto A156920.
Right hand column sequences 2^n*A000340, 2^n*A156922, 2^n*A156923, 2^n*A156924. (End)

Programs

  • Maple
    A142963 := proc(n,m): if n=m+1 then 2^(n-1); elif m=0 then 1 ; elif m<0 or m>n-1 then 0; else (m+1)*procname(n-1, m)+(4*n-4*m-2)*procname(n-1, m-1); end if; end proc: seq(seq(A142963(n,m), m=0..n-1), n=1..9); # Johannes W. Meijer, Sep 28 2011
    # Alternatively (assumes offset 0):
    p := (n,x) -> (1/2)*add(Stirling2(n+1,k+1)*x^k*(1-4*x)^(n-k)*(2*k+2)!/(k+1)!, k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od;
    # Peter Luschny, Jun 18 2017
  • Mathematica
    t[, 0] = 1; t[n, m_] /; m == n-1 := 2^m; t[n_, m_] := (m+1)*t[n-1, m] + (4*n-4*m-2)*t[n-1, m-1]; Table[t[n, m], {n, 1, 10}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jun 21 2013, after Johannes W. Meijer *)

Formula

G(k, x) = Sum_{p=0..k} S2(k, p)*((2*p)!/p!)*x^p/(1-4*x)^(p+1), k >= 0 (here k >= 1), with the Stirling2 triangle S2(k, p):=A048993(k, p). (Proof from the product of the o.g.f.s of the two convoluted sequences and the normal ordering (x^d_x)^k = Sum_{p=0..k} S2(k, p)*x^p*d_x^p, with the derivative operator d_x.)
a(k,m) = [x^m]P(k, x) = [x^m] ((1-4*x)^(k+1))*G(k,x)/(2*x), k>=1, m=0,1,...,k-1.
For the triangle coefficients the following relation holds: T(n,m) = (m+1)*T(n-1,m) + (4*n-4*m-2)*T(n-1,m-1) with T(n,m=0) = 1 and T(n,m=n-1) = 2^(n-1), n >= 1 and 0 <= m <= n-1. - Johannes W. Meijer, Feb 20 2009
From Peter Bala, Jan 18 2018: (Start)
(x*d/dx)^n (1/(sqrt(1 - 4*x)) = 2*x*P(n,x)/sqrt(1 - 4*x)^(n+1/2) for n >= 1.
x*P(n,x)/(1 - 4*x)^(n+1/2) = (1/2)*Sum_{k >= 1} binomial(2*k,k)* k^n*x^k for n >= 1.
P(n+1,x) = ((4*n - 2)*x + 1)*P(n,x) - x*(4*x - 1)*d/dx(P(n,x)).
Hence the polynomial P(n,x) has all real zeros by Liu et al., Theorem 1.1, Corollary 1.2. (End)

Extensions

Minor edits by Johannes W. Meijer, Sep 28 2011
A more precise name by Peter Luschny, Jun 18 2017
Name reformulated with offset corrected, edited by Wolfdieter Lang, Aug 23 2019

A156933 FP4 polynomials related to the o.g.f.s of the columns of the A156925 matrix.

Original entry on oeis.org

1, 1, 1, -11, 156, -627, 736, 591, -1116, -369, -6, 106, -2772, 76070, -1087552, 8632650, -40358780, 106452214, -99774996, -284430514, 1125952500, -1581820542, 737716032, 414532350, -357790500, -81870750, -1275750
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Comments

For the matrix of the coefficients of the FP2 see A156925. The coefficients in the columns of this matrix are the powers of z^m, m=0, 1, 2, ... . The columns are numbered: 1, 2, 3, ... .
The GF4(z;m) generate the sequences of the z^m coefficients. The general structure of the GF4(z;m) is given below.
The FP4(z,m) in the numerator of the GF4(z;m) is a polynomial of a certain degree, let's say k4. The (k4+1) coefficients of this polynomial can be determined one by one by comparing the series expansion of the FP4(z,m) with the values of the powers of z^m in column (m+1). These values can be generated with the GF2 formulas, see A156925.
An appropriate name for the polynomials FP4(z;m) in the numerators of the GF4(z;m) seems to be the flower polynomials of the fourth kind because the zero patterns of these polynomials look like flowers. The zero patterns of the FP4 and the FP3, see A156927, resemble each other closely and look like the zero patterns of the FP1 and FP2.
The sequence of (k4+1) number of terms of the FP4(z;m) polynomials for m from 0 to 11 is 1, 2, 7, 17, 28, 44, 63, 83, 108, 136, 167, 199.

Examples

			The first few rows of the "triangle" of the FP4(z;m) coefficients are:
[1]
[1, 1]
[ -11, 156, -627, 736, 591, -1116, -369]
The first few FP4 polynomials are:
FP4(z; m=0) = 1
FP4(z; m=1) = (1+z)
FP4(z; m=2) = ( -11+156*z-627*z^2+736*z^3+591*z^4-1116*z^5-369*z^6 )
Some GF4(z;m) are:
GF4(z;m=1) = z*(1+z)/((1-3*z)*(1-z)^4)
GF4(z;m=2) = z^2*(-11+156*z-627*z^2+736*z^3+591*z^4-1116*z^5-369*z^6)/((1-z)^7*(1-3*z)^4*(1-5*z))
		

Crossrefs

For the first few GF4's see A156934, A156935, A156936, A156937.
Row sums A156938.
For the polynomials in the denominators of the GF4(z;m) see A157705. - Johannes W. Meijer, Mar 07 2009

Formula

G.f.: GF4(z;m):= z^q*FP4(z;m) / Product_{k=0..m} (1-(2*m+1-(2*k))*z)^(3*k+1).

A098695 a(n) = 2^(n(n-1)/2) * Product_{k=1..n} k!.

Original entry on oeis.org

1, 1, 4, 96, 18432, 35389440, 815372697600, 263006617337856000, 1357366631815981301760000, 126095668058466123464363212800000, 234278891648287676839670388023623680000000
Offset: 0

Views

Author

Ralf Stephan, Sep 22 2004

Keywords

Comments

Equals the absolute values of the row sums of A156921. - Johannes W. Meijer, Feb 20 2009

Programs

Formula

a(n) = 2^(n(n-1)/2) * Product_{k=1..n} k!.
a(n) = A006125(n) * A000178(n).
a(n) ~ 2^(n^2/2 + 1/2)*exp(-3*n^2/4 - n + 1/12)*n^(n^2/2 + n + 5/12)*Pi^(n/2 + 1/2)/A, where A is the Glaisher-Kinkelin constant (A074962). - Ilya Gutkovskiy, Dec 11 2016

Extensions

a(0)=1 added, offset changed, and edited by Johannes W. Meijer, Feb 23 2009, Nov 22 2012
Previous Showing 11-14 of 14 results.