A339712
a(n) = Sum_{d|n} d^(d+n/d-1) * binomial(d+n/d-2, d-1).
Original entry on oeis.org
1, 5, 28, 273, 3126, 46948, 823544, 16781441, 387421948, 10000078446, 285311670612, 8916102176891, 302875106592254, 11112006865913416, 437893890382064056, 18446744074783625217, 827240261886336764178, 39346408075327954053967, 1978419655660313589123980
Offset: 1
-
a[n_] := DivisorSum[n, #^(# + n/# - 1) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 20] (* Amiram Eldar, Apr 25 2021 *)
-
a(n) = sumdiv(n, d, d^(d+n/d-1)*binomial(d+n/d-2, d-1));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x/(1-k*x^k))^k))
A339482
a(n) = Sum_{d|n} d^(n-d+1) * binomial(d+n/d-2, d-1).
Original entry on oeis.org
1, 3, 4, 21, 6, 346, 8, 4617, 13132, 80696, 12, 4903847, 14, 40410966, 756336736, 2416181265, 18, 306560794753, 20, 6941876836216, 132964265599502, 34522735212626, 24, 116720277621236637, 33378601074218776, 51185893450298400, 60788365423272068968
Offset: 1
-
a[n_] := DivisorSum[n, #^(n - # + 1) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
-
a(n) = sumdiv(n, d, d^(n-d+1)*binomial(d+n/d-2, d-1));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k*(x/(1-(k*x)^k))^k))
A309634
G.f.: x * Sum_{k>=1} x^k / (1 - x^k)^a(k).
Original entry on oeis.org
0, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 5, 4, 1, 7, 1, 9, 8, 6, 1, 7, 6, 7, 8, 14, 1, 18, 1, 9, 12, 6, 23, 17, 1, 9, 17, 17, 1, 35, 1, 31, 41, 8, 1, 23, 29, 24, 12, 44, 1, 33, 47, 49, 30, 16, 1, 61, 1, 20, 120, 40, 84, 105, 1, 35, 23, 85, 1, 68, 1, 19, 115, 88, 151, 160, 1
Offset: 1
-
a:= proc(n) option remember; uses numtheory;
add(binomial((n-1)/d+a(d)-2, a(d)-1), d=divisors(n-1))
end:
seq(a(n), n=1..80); # Alois P. Heinz, Jan 27 2025
-
a[n_] := a[n] = SeriesCoefficient[x Sum[x^k/(1 - x^k)^a[k], {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 80}]
a[n_] := a[n] = Sum[Binomial[(n - 1)/d + a[d] - 2, a[d] - 1], {d, Divisors[n - 1]}]; a[1] = 0; Table[a[n], {n, 1, 80}]
-
seq(n)={my(v=vector(n)); v[2]=1; for(n=2, #v-1, v[n+1] = sumdiv(n, d, binomial(n/d + v[d] - 2, v[d] - 1))); v} \\ Andrew Howroyd, Aug 10 2019
Original entry on oeis.org
1, 2, 1, 4, 2, 1, 8, 5, 3, 1, 16, 12, 6, 4, 1, 32, 28, 13, 10, 5, 1, 64, 64, 33, 20, 15, 6, 1, 128, 144, 84, 39, 35, 21, 7, 1, 256, 320, 202, 88, 70, 56, 28, 8, 1, 512, 704, 468, 228, 131, 126, 84, 36, 9, 1, 1024, 1536, 1071, 600, 260, 252, 210, 120, 45, 10, 1
Offset: 1
1;
2, 1;
4, 2, 1;
8, 5, 3, 1;
16, 12, 6, 4, 1;
32, 28, 13, 10, 5, 1;
64, 64, 33, 20, 15, 6, 1;
128, 144, 84, 39, 35, 21, 7, 1;
256, 320, 202, 88, 70, 56, 28, 8, 1;
512, 704, 468, 228, 131, 126, 84, 36, 9, 1;
1024, 1536, 1071, 600, 260, 252, 210, 120, 45, 10, 1;
2048, 3328, 2441, 1495, 605, 468, 462, 330, 165, 55, 11, 1;
4096, 7168, 5532, 3508, 1595, 864, 924, 792, 495, 220, 66, 12, 1;
...
Original entry on oeis.org
1, 2, 0, 2, 1, 0, 4, 0, 1, 0, 2, 1, 1, 1, 0, 8, 3, 0, 0, 1, 0, 2, 1, 1, 1, 1, 1, 0, 10, 0, 5, 0, 1, 0, 1, 0, 8, 7, 0, 1, 1, 0, 1, 1, 0, 12, 5, 6, 5, 0, 0, 10, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 34, 10, 10, 0, 7, 0, 10, 0, 0, 1, 0
Offset: 1
First few rows of the triangle =
1;
2, 0;
2, 1, 0;
4, 0, 1, 0;
2, 1, 1, 1, 0;
8, 3, 0, 0, 1, 0;
2, 1, 1, 1, 1, 1, 0;
10, 0, 5, 0, 1, 0, 1, 0;
8, 7, 0, 1, 1, 0, 1, 1, 0;
12, 5, 6, 5, 0, 0, 10, 1, 0;
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
34, 10, 10, 0, 7, 0, 1, 0, 0, 0, 1, 0;
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
...
A358410
a(n) = Sum_{d|n} (d + n/d - 2)!/(d - 1)!.
Original entry on oeis.org
1, 2, 3, 9, 25, 130, 721, 5069, 40333, 363006, 3628801, 39917607, 479001601, 6227025848, 87178291591, 1307674408449, 20922789888001, 355687428461452, 6402373705728001, 121645100412461861, 2432902008176660217, 51090942171749356812, 1124000727777607680001
Offset: 1
-
a[n_] := DivisorSum[n, (# + n/# - 2)!/(# - 1)! &]; Array[a, 23] (* Amiram Eldar, Aug 30 2023 *)
-
a(n) = sumdiv(n, d, (d+n/d-2)!/(d-1)!);
-
my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, (k-1)!*(x/(1-x^k))^k))
A330020
Expansion of e.g.f. Sum_{k>=1} x^k / (k! * (1 - x^k)^k).
Original entry on oeis.org
1, 3, 7, 49, 121, 2161, 5041, 127681, 725761, 12852001, 39916801, 2917918081, 6227020801, 392423391361, 4740319584001, 122053759027201, 355687428096001, 57808258040332801, 121645100408832001, 18854997267794688001, 289799177540640768001, 7306005040298918553601
Offset: 1
-
nmax = 22; CoefficientList[Series[Sum[x^k/(k! (1 - x^k)^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
a[n_] := n! Sum[(d + n/d - 2)!/(d! (d - 1)! (n/d - 1)!), {d, Divisors[n]}]; Table[a[n], {n, 1, 22}]
A360801
Expansion of Sum_{k>0} (x / (1 - 2 * x^k))^k.
Original entry on oeis.org
1, 3, 5, 13, 17, 51, 65, 169, 281, 603, 1025, 2373, 4097, 8655, 16685, 33969, 65537, 134151, 262145, 530269, 1050481, 2108439, 4194305, 8420201, 16778337, 33607707, 67120565, 134338493, 268435457, 537151131, 1073741825, 2148024289, 4295035145, 8591048739
Offset: 1
-
a[n_] := DivisorSum[n, 2^(n/# - 1) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Aug 02 2023 *)
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (x/(1-2*x^k))^k))
-
a(n) = sumdiv(n, d, 2^(n/d-1)*binomial(d+n/d-2, d-1));
A360802
Expansion of Sum_{k>0} (x / (1 - (2 * x)^k))^k.
Original entry on oeis.org
1, 3, 5, 17, 17, 105, 65, 449, 641, 1953, 1025, 16257, 4097, 37761, 93185, 247809, 65537, 1499649, 262145, 6596609, 8847361, 13654017, 4194305, 210026497, 90177537, 251764737, 833880065, 2659418113, 268435457, 18345328641, 1073741825, 53553922049, 75438751745
Offset: 1
-
a[n_] := DivisorSum[n, 2^(n-#) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Aug 02 2023 *)
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (x/(1-(2*x)^k))^k))
-
a(n) = sumdiv(n, d, 2^(n-d)*binomial(d+n/d-2, d-1));
A382512
Expansion of Sum_{p prime} x^p / (1 - x^p)^p.
Original entry on oeis.org
0, 1, 1, 2, 1, 6, 1, 4, 6, 10, 1, 16, 1, 14, 30, 8, 1, 30, 1, 45, 56, 22, 1, 48, 70, 26, 45, 98, 1, 196, 1, 16, 132, 34, 420, 96, 1, 38, 182, 350, 1, 588, 1, 308, 615, 46, 1, 160, 924, 740, 306, 481, 1, 198, 2002, 1744, 380, 58, 1, 1605, 1, 62, 3234, 32, 3640
Offset: 1
-
nmax = 65; CoefficientList[Series[Sum[x^Prime[k]/(1 - x^Prime[k])^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Comments