cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A199264 Period 18: repeat (9,8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8).

Original entry on oeis.org

9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 04 2011

Keywords

Comments

'Valley and Peak' sequence.
The sequence contains only values less than 10.
abs(a(n)-a(n+1)) = 1.
This sequence is in A158289. - Omar E. Pol, Feb 02 2012

Crossrefs

Cf. A158289.

Programs

  • Mathematica
    Flatten[Table[{9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8}, {5}]] (* Arkadiusz Wesolowski, Dec 03 2011 *)
    (* For Mathematica 7.0+ *) ArrayPad[Range[0, 9], {9, 68}, "Reflected"] (* Arkadiusz Wesolowski, Feb 02 2011 *)
    Table[Abs[Mod[n, 18] - 9], {n, 0, 81}] (* Alonso del Arte, Jul 03 2012 *)
    PadRight[{},90,Join[Range[9,0,-1],Range[8]]] (* Harvey P. Dale, Apr 08 2013 *)
  • PARI
    a(n)=[9,8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8][n%18+1] \\ Charles R Greathouse IV, Jul 17 2016

Formula

a(n) = 9 - A158289(n).
G.f.: ( -9+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8-8*x^9 ) / ( (x-1)*(1+x)*(x^2-x+1)*(x^6-x^3+1) ). - R. J. Mathar, Nov 05 2011
a(n) = A158289(n+9). - Omar E. Pol, Feb 02 2012
a(n) = abs((n mod 18) - 9). - Alonso del Arte, Jul 03 2012

A164360 Period 3: repeat [5, 4, 3].

Original entry on oeis.org

5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3, 5, 4, 3
Offset: 0

Views

Author

Stephen Crowley, Aug 14 2009

Keywords

Comments

From Klaus Brockhaus, May 29 2010: (Start)
Continued fraction expansion of (32+sqrt(1297))/13.
Decimal expansion of 181/333. (End)

Crossrefs

Cf. A007877 (repeat 0,1,2,1), A068073 (repeat 1,2,3,2), A028356 (repeat 1,2,3,4,3,2), A130784 (repeat 1,3,2), A158289 (repeat 0,1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2,1).
Cf. A178566 (decimal expansion of (32+sqrt(1297))/13). [Klaus Brockhaus, May 29 2010]

Programs

Formula

a(n) = 4+(-1)^n*((1/2+I*sqrt(3)/6)*((1+I*sqrt(3))/2)^n+(1/2-I*sqrt(3)/6)*((1-I*sqrt(3))/2)^n). [Corrected by Klaus Brockhaus, Sep 17 2009]
a(n) = 4+(1/3)*sqrt(3)*sin(2*n*Pi/3)+cos(2*n*Pi/3). [Corrected by Klaus Brockhaus, Sep 17 2009]
a(n) = a(n-3) for n > 2, with a(0) = 5, a(1) = 4, a(2) = 3.
G.f.: (5+4*x+3*x^2)/((1-x)*(1+x+x^2)). [Klaus Brockhaus, Sep 17 2009]
E.g.f.: 4*exp(x)+(1/3)*sqrt(3)*exp(-(1/2)*x)*sin((1/2)*x*sqrt(3))+exp(-(1/2)*x)*cos((1/2)*x*sqrt(3)).
a(n) = 4 + A057078(n). - Wesley Ivan Hurt, Jul 01 2016

Extensions

Edited by Klaus Brockhaus, Sep 17 2009
Offset changed to 0 and formulas adjusted by Klaus Brockhaus, May 18 2010

A262734 Period 16: repeat (1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2015

Keywords

Comments

Decimal expansion of 111111112/900000009.
For n which lies in the interval [16*(k-1), 8*(2*k-1)], where k>0 -> pattern {1, 2, 3, 4, 5, 6, 7, 8, 9}; for n which lies in the interval [16*k - 7, 16*k - 1], where k>0 -> pattern {8, 7, 6, 5, 4, 3, 2}.

Crossrefs

Programs

  • Magma
    &cat[[1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2]: n in [0..10]]; // Vincenzo Librandi, Sep 29 2015
    
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, -1, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 9}, 120] (* Vincenzo Librandi, Sep 29 2015 *)
  • PARI
    Vec(-(2*x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)*(x^8+1)) + O(x^100)) \\ Colin Barker, Sep 29 2015
    
  • PARI
    111111112/900000009. \\ Altug Alkan, Sep 29 2015
    
  • PARI
    vector(200, n, default(realprecision, n+2); floor(111111112/900000009*10^n)%10) \\ Altug Alkan, Nov 12 2015

Formula

-1 + a(16*(k - 1)) = -2 + a(8*k + 3*(-1)^k - 4) = -3 + a(2*(4*k + (-1)^k - 2)) = -4 + a(8*k + (-1)^k - 4) = -5 + a(4*(2*k - 1)) = -6 + a(8*k - (-1)^k - 4) = -7 + a(-2*(-4*k + (-1)^k + 2)) = -8 + a(8*k - 3*(-1)^k - 4) = -9 + a(8*(2*k - 11)) = 0, for k>0.
a(0) = 1, a(n) = a(n+1) - 1, for 16*(k - 1) <= n < 8*(2*k - 1), and a(n) = a(n + 1) + 1, for 8*(2*k - 1) <= n < 16*k, where k>0.
From Colin Barker, Sep 29 2015: (Start)
a(n) = a(n-1) - a(n-8) + a(n-9) for n>8.
G.f.: -(2*x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1) / ((x-1)*(x^8+1)). (End)
Previous Showing 11-13 of 13 results.