A256530
Number of ON cells at n-th stage in simple 2-dimensional cellular automaton (see Comments lines for definition).
Original entry on oeis.org
0, 1, 9, 21, 49, 61, 97, 157, 225, 237, 273, 333, 417, 525, 657, 813, 961, 973, 1009, 1069, 1153, 1261, 1393, 1549, 1729, 1933, 2161, 2413, 2689, 2989, 3313, 3661, 3969, 3981, 4017, 4077, 4161, 4269, 4401, 4557, 4737, 4941, 5169, 5421, 5697, 5997, 6321, 6669, 7041, 7437, 7857, 8301, 8769, 9261, 9777, 10317, 10881, 11469
Offset: 0
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
9;
21, 49;
61, 97, 157, 225;
237, 273, 333, 417, 525, 657, 813, 961;
...
Right border gives A060867.
This triangle T(n,k) shares with the triangle A160414 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc.
.
Illustration of initial terms, for n = 1..10:
. _ _ _ _ _ _ _ _
. | _ _ | | _ _ |
. | | _|_|_ _ _ _ _ _ _ _ _ _ _|_|_ | |
. | |_| _ _ _ _ _ _ _ _ _ _ _ _ |_| |
. |_ _| | _ _ _ _ | | _ _ _ _ | |_ _|
. | | | _ _ | | | | _ _ | | |
. | | | | _|_|_|_|_|_|_ | | | |
. | | | |_| _ _ _ _ |_| | | |
. | | |_ _| | _|_|_ | |_ _| | |
. | |_ _ _| |_| _ |_| |_ _ _| |
. | _ _ _| _| |_| |_ |_ _ _ |
. | | _ _| | |_ _ _| | |_ _ | |
. | | | _| |_ _| |_ _| |_ | | |
. | | | | |_ _ _ _ _ _ _| | | | |
. | | | |_ _| | | | | |_ _| | | |
. _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
. | _| |_ _ _ _ _ _| |_ _ _ _ _ _| |_ |
. | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
. | |_ _| | | |_ _| |
. |_ _ _ _| |_ _ _ _|
.
After 10 generations there are 273 ON cells, so a(10) = 273.
-
With[{z=7},Join[{0},Flatten[Array[(2^#-1)^2+12Range[0,2^(#-1)-1]^2&,z]]]] (* Generates 2^z terms *) (* Paolo Xausa, Nov 15 2023, after Omar E. Pol *)
A256534
Number of ON cells at n-th stage in simple 2-dimensional cellular automaton (see Comments lines for definition).
Original entry on oeis.org
0, 4, 16, 28, 64, 76, 112, 172, 256, 268, 304, 364, 448, 556, 688, 844, 1024, 1036, 1072, 1132, 1216, 1324, 1456, 1612, 1792, 1996, 2224, 2476, 2752, 3052, 3376, 3724, 4096, 4108, 4144, 4204, 4288, 4396, 4528, 4684, 4864, 5068, 5296, 5548, 5824, 6124, 6448, 6796, 7168, 7564, 7984, 8428, 8896, 9388, 9904, 10444, 11008
Offset: 0
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
4;
16;
28, 64;
76, 112, 172, 256;
268, 304, 364, 448, 556, 688, 844, 1024;
...
Right border gives the elements of A000302 greater than 1.
This triangle T(n,k) shares with the triangle A160410 the terms of the column k, if k is a power of 2, for example, both triangles share the following terms: 4, 16, 28, 64, 76, 112, 256, 268, 304, 448, 1024, etc.
.
Illustration of initial terms, for n = 1..10:
. _ _ _ _ _ _ _ _
. | _ _ | | _ _ |
. | | _|_|_ _ _ _ _ _ _ _ _ _ _ _|_|_ | |
. | |_| _ _ _ _ _ _ _ _ _ _ _ _ |_| |
. |_ _| | _ _ _ _ | | _ _ _ _ | |_ _|
. | | | _ _ | | | | _ _ | | |
. | | | | _|_|_|_ _|_|_|_ | | | |
. | | | |_| _ _ _ _ |_| | | |
. | | |_ _| | _|_ _|_ | |_ _| | |
. | |_ _ _| |_| _ _ |_| |_ _ _| |
. | | | | | | | |
. | _ _ _| _| |_ _| |_ |_ _ _ |
. | | _ _| | |_ _ _ _| | |_ _ | |
. | | | _| |_ _| |_ _| |_ | | |
. | | | | |_ _ _ _ _ _ _ _| | | | |
. | | | |_ _| | | | | |_ _| | | |
. _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
. | _| |_ _ _ _ _ _| |_ _ _ _ _ _| |_ |
. | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
. | |_ _| | | |_ _| |
. |_ _ _ _| |_ _ _ _|
.
After 10 generations there are 304 ON cells, so a(10) = 304.
-
{0}~Join~Flatten@ Table[4^i + 3 (2 j)^2, {i, 6}, {j, 0, 2^(i - 1) - 1}] (* Michael De Vlieger, Nov 03 2022 *)
A164982
Number of ON cells after n generations of the 2D cellular automaton described in the comments.
Original entry on oeis.org
1, 3, 4, 12, 7, 21, 16, 40, 22, 42, 34, 67, 52, 85, 70, 125, 94, 126, 102, 150, 118, 172, 177, 234, 209, 240, 238, 319, 285, 363, 378, 458, 383, 444, 404, 493, 474, 520, 529, 628, 583, 602, 622, 727, 664, 816, 835, 948, 873, 926, 952, 1065, 1010, 1090, 1187
Offset: 1
-
RasterGraphics[state_?MatrixQ, colors_Integer : 2, opts___] := Graphics[Raster[Reverse[1 - state/(colors - 1)]], AspectRatio -> (AspectRatio /. {opts} /. AspectRatio -> Automatic), Frame -> True, FrameTicks -> None, GridLines -> None];
rule=61986;
Show[GraphicsArray[Map[RasterGraphics, CellularAutomaton[{rule, {2, {{1, 4, 1}, {0, 0, 0}, {4, 1, 4}}}, {1, 1}}, {{{1}}, 0}, 4, -5]]]];
ca = CellularAutomaton[{rule, {2, {{1, 4, 1}, {0, 0, 0}, {4, 1, 4}}}, {1, 1}}, {{{1}}, 0}, 99, -100];
Table[Total[ca[[i]], 2], {i, 1, 100}]
A160416
Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).
Original entry on oeis.org
0, 1, 8, 11, 32, 39, 80, 89, 146, 159
Offset: 0
If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
..9...9...9...9...9
...888.888.888.888.
...878.878.878.878.
...886668666866688.
..9..656.656.656..9
...886644464446688.
...878.434.434.878.
...886644222446688.
..9..656.212.656..9
000000000022446688.
0000000000.434.878.
000000000064446688.
000000000056.656..9
000000000066866688.
0000000000.878.878.
0000000000.888.888.
00000000009...9...9
0000000000.........
0000000000.........
Original entry on oeis.org
3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81, 81, 243, 9, 27, 27, 81, 27, 81, 81, 243, 27, 81, 81, 243, 81, 243, 243, 729, 9, 27, 27, 81, 27, 81, 81, 243, 27, 81, 81, 243, 81, 243, 243, 729, 27, 81, 81, 243, 81, 243, 243, 729, 81, 243, 243, 729, 243, 729
Offset: 1
-
a[n_] := 3^(1 + DigitCount[n - 1, 2, 1]); Array[a, 100] (* Amiram Eldar, Feb 02 2024 *)
A183126
Toothpick sequence with toothpicks connected by their endpoints.
Original entry on oeis.org
0, 1, 7, 23, 39, 79, 95, 135, 175, 287, 303, 343, 383, 495, 535, 647, 759, 1087, 1103, 1143, 1183, 1295, 1335, 1447, 1559, 1887, 1927, 2039, 2151, 2479, 2591, 2919, 3247, 4223, 4239, 4279, 4319, 4431, 4471, 4583, 4695
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..1000
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 31.
- John W. Layman, Graphs of the toothpick configuration for generations 1-15
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
-
a[n_] := 7 + 4 (n - 2 + Sum[3^DigitCount[k, 2, 1], {k, n - 2}]); a[0] = 0; a[1] = 1; Array[a, 41, 0] (* Michael De Vlieger, Nov 02 2022 *)
Terms a(0)-a(10) confirmed and terms a(11)-a(35) added by
John W. Layman, Mar 30 2011
Original entry on oeis.org
1, 7, 7, 49, 7, 49, 49, 343, 7, 49, 49, 343, 49, 343, 343, 2401, 7, 49, 49, 343, 49, 343, 343, 2401, 49, 343, 343, 2401, 343, 2401, 2401, 16807, 7, 49, 49, 343, 49, 343, 343, 2401, 49, 343, 343, 2401, 343, 2401, 2401, 16807, 49, 343, 343, 2401, 343, 2401, 2401, 16807, 343, 2401, 2401, 16807, 2401, 16807, 16807, 117649
Offset: 0
From _Omar E. Pol_, May 03 2015: (Start)
Also, written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
1;
7;
7, 49;
7, 49, 49, 343;
7, 49, 49, 343, 49, 343, 343, 2401;
7, 49, 49, 343, 49, 343, 343, 2401, 49, 343, 343, 2401, 343, 2401, 2401, 16807;
...
Row sums give A055274.
Right border gives A000420.
(End)
Cf.
A000420,
A011782,
A055274,
A160410,
A151785,
A161411,
A160428,
A160429,
A161342,
A256140,
A256141.
A165345
Number of ON cells after n generations of the 2D cellular automaton described in the comments.
Original entry on oeis.org
1, 5, 9, 25, 29, 41, 53, 105, 113, 129, 141, 193, 205, 241, 285, 433, 453, 481, 497, 553, 569, 609, 653, 801, 829, 881, 917, 1073, 1109, 1217, 1349, 1793, 1845, 1905, 1933, 2001, 2029, 2081, 2129, 2281, 2313, 2369, 2409, 2569, 2609, 2721, 2853, 3297, 3357
Offset: 1
-
RasterGraphics[state_?MatrixQ, colors_Integer:2, opts___]:= Graphics[Raster[ Reverse[1 -state/(colors -1)]],AspectRatio-> (AspectRatio /.{opts} /.AspectRatio-> Automatic),Frame-> True, FrameTicks ->none,GridLines->none]; wt = {{10, 2, 10}, {2, 1, 2}, {10, 2, 10}}; rule=755364134566574; init = {{1}}; Show[GraphicsArray[ Map[RasterGraphics, CellularAutomaton[{rule, {2, wt}, {1, 1}}, {init, 0}, 9, -10]]]]; ca = CellularAutomaton[{rule, {2, wt}, {1, 1}}, {init, 0}, 99, -100]; a = Table[Total[ca[[i]], 2], {i, 1, 100}]
Original entry on oeis.org
0, 1, 5, 12, 28, 47, 75, 112, 176, 243, 319, 404, 516, 637, 785, 960, 1216, 1475, 1743, 2020, 2324, 2637, 2977, 3344, 3792, 4249, 4733, 5244, 5836, 6455, 7155, 7936, 8960, 9987, 11023, 12068, 13140, 14221, 15329, 16464, 17680, 18905, 20157
Offset: 1
Essentially partial sums of
A130665.
A171170
Corner sequence (starting each round in the first quadrant).
Original entry on oeis.org
1, 2, 3, 4, 4, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 1, 4, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 1, 3, 4, 1, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 3, 4, 1, 2, 3, 4, 3, 4, 1, 4, 1, 2, 4, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 1, 3, 4, 1, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 3, 4, 1, 2, 3
Offset: 1
================
.......41.......
.......32.......
================
......4141......
......3..2......
......4..1......
......3232......
================
.....41..41.....
.....3....2.....
................
................
.....4....1.....
.....32..32.....
================
....41414141....
....3..23..2....
....4......1....
....32....32....
....41....41....
....3......2....
....4..14..1....
....32323232....
================
...41......41...
...3........2...
................
................
................
................
................
................
................
...4........1...
...32......32...
================
And so on.
Triangle begins:
1,2,3,4;
4,1,2, 1,2,3, 2,3,4, 3,4,1;
4,1,2, 1,2,3, 2,3,4, 3,4,1;
3,4,1,4,1,2,1,2,3, 4,1,2,1,2,3,2,3,4, 1,2,3,2,3,4,3,4,1, 2,3,4,3,4,1,4,1,2;
4,1,2, 1,2,3, 2,3,4, 3,4,1;
3,4,1,4,1,2,1,2,3, 4,1,2,1,2,3,2,3,4, 1,2,3,2,3,4,3,4,1, 2,3,4,3,4,1,4,1,2;
Contribution from _Omar E. Pol_, Dec 09 2009: (Start)
Illustration for n = 1..148
================
.41..41..41..41.
.341412..341412.
..3412....3412..
..434141414121..
.43234123412321.
.32.43414121.32.
....32341232....
....41432141....
.41.34323212.41.
.34143214321412.
..343232323212..
..4321....4321..
.432321..432321.
.32..32..32..32.
================
(End)
Comments