cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 67 results. Next

A239331 Square array, read by antidiagonals: column k has g.f. (1+(k-1)*x)^2/(1-x)^3.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 13, 10, 1, 1, 9, 22, 25, 15, 1, 1, 11, 33, 46, 41, 21, 1, 1, 13, 46, 73, 79, 61, 28, 1, 1, 15, 61, 106, 129, 121, 85, 36, 1, 1, 17, 78, 145, 191, 201, 172, 113, 45, 1, 1, 19, 97, 190, 265, 301, 289, 232, 145, 55, 1, 1, 21
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2014

Keywords

Examples

			Square array begins:
n\k : 0......1......2......3......4......5......6......7......8......9
======================================================================
.0||  1......1......1......1......1......1......1......1......1......1
.1||  1......3......5......7......9.....11.....13.....15.....17.....19
.2||  1......6.....13.....22.....33.....46.....61.....78.....97....118
.3||  1.....10.....25.....46.....73....106....145....190....241....298
.4||  1.....15.....41.....79....129....191....265....351....449....559
.5||  1.....21.....61....121....201....301....421....561....721....901
.6||  1.....28.....85....172....289....436....613....820...1057...1324
.7||  1.....36....113....232....393....596....841...1128...1457...1828
.8||  1.....45....145....301....513....781...1105...1485...1921...2413
.9||  1.....55....181....379....649....991...1405...1891...2449...3079
10||  1.....66....221....466....801...1226...1741...2346...3041...3826
11||  1.....78....265....562....969...1486...2113...2850...3697...4654
		

Crossrefs

Formula

T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k).
T(n,k) = 3*T(n,k-1) - 3*T(n,k-2) + T(n,k-3).
T(n,k) = (T(n,k-1) + T(n,k+1))/2 - A161680(n).
T(n,k) = (T(n-1,k) + T(n+1,k) - A000290(n))/2.

A271024 Number T(n,k) of set partitions of [n] having exactly k pairs (i,j) with i < j such that i and j are in different blocks; triangle T(n,k), n >= 0, 0 <= k <= n*(n-1)/2 read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 3, 1, 1, 0, 0, 4, 3, 6, 1, 1, 0, 0, 0, 5, 0, 10, 10, 15, 10, 1, 1, 0, 0, 0, 0, 6, 0, 0, 15, 25, 0, 60, 35, 45, 15, 1, 1, 0, 0, 0, 0, 0, 7, 0, 0, 0, 21, 21, 35, 0, 105, 105, 105, 210, 140, 105, 21, 1, 1, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 28, 28
Offset: 0

Views

Author

Alois P. Heinz, Mar 28 2016

Keywords

Examples

			T(3,0) = 1: 123.
T(3,2) = 3: 12|3, 13|2, 1|23.
T(3,3) = 1: 1|2|3.
Triangle T(n,k) begins:
  1;
  1;
  1, 1;
  1, 0, 3, 1;
  1, 0, 0, 4, 3, 6,  1;
  1, 0, 0, 0, 5, 0, 10, 10, 15, 10, 1;
  1, 0, 0, 0, 0, 6,  0,  0, 15, 25, 0, 60, 35, 45, 15, 1;
		

Crossrefs

Row sums give A000110.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, x^(m->
          add(j*(m-j)/2, j=l))(add(i, i=l)), b(n-1, [l[], 1])+
          add(b(n-1, subsop(j=l[j]+1, l)), j=1..nops(l)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [])):
    seq(T(n), n=0..10);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, x^Function[m, Sum[(1/2)*j*(m - j), {j, l}]][Total[l]], Sum[b[n - 1, ReplacePart[l, j -> l[[j]] + 1]], {j, 1, Length[l]}] + b[n - 1, Append[l, 1]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, {}]];
    Flatten[Table[T[n], {n, 0, 10}]] (* Jean-François Alcover, May 27 2018, translated from Maple *)

Formula

T(n,k) = A271023(n,n*(n-1)/2-k).
T(n,n-1) = n for n >= 3.

A337206 Cardinality of maximal level sets of Gini index on integer partitions.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 7, 8, 9, 11, 13, 15, 17, 21, 23, 28, 33, 38, 44, 52, 60, 72, 81, 95, 112, 128, 147, 175, 195, 233, 267, 305, 353, 412, 462, 533, 617, 703, 807, 932, 1052, 1210, 1389, 1569, 1785, 2060, 2315, 2642, 3023, 3405, 3876, 4413, 4968
Offset: 0

Views

Author

Grant Kopitzke, Aug 18 2020

Keywords

Comments

a(n) is a lower bound on A076269(n).

Examples

			For n=6 the maximal level set of the Gini index contains the partitions (3,3) and (4,1,1). So a(6)=2.
		

Crossrefs

Lower bound on A076269.

Programs

  • Maple
    b:= proc(n, i, w) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, w)+expand(x^(w*i)*b(n-i, min(i, n-i), w+1))))
        end:
    a:= n-> max(coeffs(b(n$2, 0))):
    seq(a(n), n=0..61);  # Alois P. Heinz, Jan 20 2023
  • Mathematica
    m = 75;
    p = Product[ 1/(1 - q^Binomial[i + 1, 2] x^i), {i, 1, m}];
    psn = Expand@Normal@Series[ p, {x, 0, m}];
    psnc = CoefficientList[CoefficientList[psn, {x}, {m}], {q}];
    Map[Max, psnc]

Formula

G.f.: Product_{n=1..oo} 1/(1-q^(binomial(n+1,2))x^n)-1 = Sum_{n=1..oo} Sum_{lambda a partition of n} q^(binomial(n+1,2)-g(lambda))x^n, where g(lambda) is the Gini index of lambda.
a(n) = max_{k=0..A161680(n)} A264034(n,k). - Alois P. Heinz, Jan 20 2023

Extensions

Typo in a(43) corrected by Alois P. Heinz, Jan 20 2023

A342939 a(n) is the Skolem number of the triangular grid graph T_n.

Original entry on oeis.org

1, 2, 5, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379, 1432, 1486
Offset: 1

Views

Author

Stefano Spezia, Mar 30 2021

Keywords

Comments

For the meaning of Skolem number of a graph, see Definitions 1.4 and 1.5 in Carrigan and Green.

Crossrefs

For n > 1, 3*A002061(n) gives the Skolem number of the hexagonal grid graph H_n.

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1},{1,2,5,7,11,16},55]

Formula

O.g.f.: x*(1 - x + 2*x^2 - 3*x^3 + 3*x^4 - x^5)/(1 - x)^3.
E.g.f.: exp(x)*(2 + x^2)/2 - 1 + x^3/6.
a(n) = 3*a(n-1) - 3*a(n-2) - a(n-3) for n > 6.
Except for a(3) = 5:
a(n) = 1 + n*(n - 1)/2 (see Theorem 2.5 in Carrigan and Green).
a(n) = 1 + A161680(n).
a(n) = A152947(n-1).

A350295 2nd subdiagonal of the triangle A350292.

Original entry on oeis.org

6, 8, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431, 1485, 1540
Offset: 3

Views

Author

Stefano Spezia, Dec 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{6,8},Table[Binomial[n,2],{n,5,56}]]
    LinearRecurrence[{3,-3,1},{6,8,10,15,21},60] (* Harvey P. Dale, Jul 01 2022 *)

Formula

a(n) = binomial(n, 2) = A000217(n-1) for n > 4 with a(3) = 6 and a(4) = 8 (see Theorem 3 in Harborth and Nienborg).
O.g.f.: x^3*(2*x^4 - 3*x^3 - 4*x^2 + 10*x - 6)/(x - 1)^3.
E.g.f.: x^2*(x^2 + 6*x + 6*exp(x) - 6)/12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 7.

A362977 The x-coordinates of the even-ranked elements of the lexicographically earliest sequence of points satisfying staircase and no-three-in-a-line conditions (see comments).

Original entry on oeis.org

0, 1, 2, 5, 6, 3, 12, 13, 4, 15, 8, 27, 19, 11, 9, 32, 25, 16, 33, 35, 59, 30, 24, 7, 51, 45, 10, 18, 29, 26, 54, 58, 14, 53, 23, 34, 37, 49, 44, 60, 43, 31, 41, 66, 17, 72, 80, 81, 78, 88, 87, 46, 83, 22, 76, 79, 130, 97, 108, 111, 94, 119, 153, 89, 39, 112
Offset: 0

Views

Author

Luc Rousseau, May 11 2023

Keywords

Comments

We construct the lexicographically earliest sequence of points M(i), for i >= 0, with the following rules:
- their (x, y) coordinates are taken among the nonnegative integers;
- if i > 0 and i is odd, then "move horizontally to a free column"; i.e., M(i) must have the same y as M(i-1), and M(i) is not allowed to have the same x as any M(k) for k < i;
- if i > 0 and i is even, then "move vertically to a free row"; i.e., M(i) must have the same x as M(i-1), and M(i) is not allowed to have the same y as any M(k) for k < i;
- three points are not allowed to be aligned.
See SVG illustration, Links section.
Then a(n) (resp. A362978(n)) is defined as the x-coordinate (resp. y-coordinate) of M(i), where i := 2n (to eliminate duplicates).

Examples

			  y
  ^
  | . . . 9 . . 8
  | . . 4 . . 5 .
  | . . . . . 6 7
  | . 2 3 . . . .
  | 0 1 . . . . .
  +-------------------> x
    0 1 2 3 4 5 6
Abscissas of the points 0, 2, 4, 6, 8, ...: 0, 1, 2, 5, 6, ...
		

Crossrefs

Cf. A362978 (the corresponding y-coordinates).
Cf. A161680 (number of nonalignment checks to pass).

Programs

  • Java
    // See Rousseau link.

A366132 Number of unordered pairs of distinct strict integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 6, 10, 15, 28, 45, 66, 105, 153, 231, 351, 496, 703, 1035, 1431, 2016, 2850, 3916, 5356, 7381, 10011, 13530, 18336, 24531, 32640, 43660, 57630, 75855, 100128, 130816, 170820, 222778, 288420, 372816, 481671, 618828, 793170, 1016025, 1295245
Offset: 0

Views

Author

Gus Wiseman, Oct 08 2023

Keywords

Examples

			The a(3) = 1 through a(8) = 15 pairs of strict partitions:
  {3,21}  {4,31}  {5,32}   {6,42}    {7,43}    {8,53}
                  {5,41}   {6,51}    {7,52}    {8,62}
                  {41,32}  {51,42}   {7,61}    {8,71}
                           {6,321}   {52,43}   {62,53}
                           {42,321}  {61,43}   {71,53}
                           {51,321}  {61,52}   {71,62}
                                     {7,421}   {8,431}
                                     {43,421}  {8,521}
                                     {52,421}  {53,431}
                                     {61,421}  {53,521}
                                               {62,431}
                                               {62,521}
                                               {71,431}
                                               {71,521}
                                               {521,431}
		

Crossrefs

For subsets instead of partitions we have A006516, non-disjoint A003462.
The disjoint case is A108796, non-strict A260669.
For non-strict partitions we have A355389.
The ordered disjoint case is A365662, non-strict A054440.
The ordered version is 2*a(n).
Including equal pairs or twins gives A366317, ordered A304990.
A000041 counts integer partitions, strict A000009.
A002219 and A237258 count partitions of 2n including a partition of n.
A161680 and A000217 count 2-subsets of {1..n}.

Programs

  • Mathematica
    Table[Length[Subsets[Select[IntegerPartitions[n],UnsameQ@@#&],{2}]],{n,0,30}]

Formula

a(n) = binomial(A000009(n),2).

A370946 Number of partitions of [n] whose non-singleton elements sum to n.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 3, 4, 5, 7, 12, 14, 20, 26, 36, 54, 68, 90, 120, 157, 202, 296, 360, 480, 612, 803, 1006, 1317, 1764, 2198, 2821, 3592, 4552, 5754, 7269, 9074, 11990, 14646, 18586, 23112, 29208, 35972, 45277, 55584, 69350, 87881, 107609, 133068, 165038
Offset: 0

Views

Author

Alois P. Heinz, Mar 06 2024

Keywords

Examples

			a(0) = 1: the empty partition.
a(3) = 1: 12|3.
a(4) = 1: 13|2|4.
a(5) = 2: 1|23|4|5, 14|2|3|5.
a(6) = 3: 123|4|5|6, 1|24|3|5|6, 15|2|3|4|6.
a(7) = 4: 124|3|5|6|7, 1|2|34|5|6|7, 1|25|3|4|6|7, 16|2|3|4|5|7.
a(8) = 5: 125|3|4|6|7|8, 134|2|5|6|7|8, 1|2|35|4|6|7|8, 1|26|3|4|5|7|8, 17|2|3|4|5|6|8.
a(9) = 7: 126|3|4|5|7|8|9, 135|2|4|6|7|8|9, 1|234|5|6|7|8|9, 1|2|3|45|6|7|8|9, 1|2|36|4|5|7|8|9, 1|27|3|4|5|6|8|9, 18|2|3|4|5|6|7|9.
a(10) = 12: 1234|5|6|7|8|9|10, 12|34|5|6|7|8|9|10, 127|3|4|5|6|8|9|10, 13|24|5|6|7|8|9|10, 136|2|4|5|7|8|9|10, 14|23|5|6|7|8|9|10, 1|235|4|6|7|8|9|10, 145|2|3|6|7|8|9|10, 1|2|3|46|5|7|8|9|10, 1|2|37|4|5|6|8|9|10, 1|28|3|4|5|6|7|9|10, 19|2|3|4|5|6|7|8|10.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 1,
          add(h(n-j)*binomial(n-1, j-1), j=2..n))
        end:
    b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0,
         `if`(n=0, h(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m+1)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..48);
  • Mathematica
    h[n_] := h[n] = If[n == 0, 1, Sum[h[n-j]*Binomial[n-1, j-1], {j, 2, n}]];
    b[n_, i_, m_] := b[n, i, m] = If[n > i*(i + 1)/2, 0, If[n == 0, h[m], b[n, i - 1, m] + b[n - i, Min[n - i, i - 1], m + 1]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Mar 08 2024, after Alois P. Heinz *)

Formula

a(n) = A370945(n,n*(n-1)/2).

A376832 Irregular triangle read by rows: the n-th row gives the number of points of an n X n square lattice that lie above or to the left of a line of increasing slope that passes through two lattice points one of which is the bottom-left corner of the lattice, (0, 0).

Original entry on oeis.org

2, 1, 0, 6, 5, 3, 2, 0, 12, 11, 10, 9, 6, 5, 4, 3, 0, 20, 19, 18, 17, 16, 15, 14, 10, 9, 8, 7, 6, 5, 4, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 0, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 0
Offset: 2

Views

Author

Stefano Spezia, Dec 22 2024

Keywords

Comments

The increasing slopes of the line are given by the Farey series of order n - 1. Specifically, they are given by the fractions A006842(n-1)/A006843(n-1) followed by their reciprocals A006843(n-1)/A006842(n-1) in reverse order, with the fraction 1/1 included only once.

Examples

			The irregular triangle begins as:
   2,  1,  0;
   6,  5,  3,  2,  0;
  12, 11, 10,  9,  6,  5,  4,  3, 0;
  20, 19, 18, 17, 16, 15, 14, 10, 9, 8, 7, 6, 5, 4, 0;
  ...
		

Crossrefs

Cf. A002378, A006842, A006843, A118403 (row lengths), A161680, A379540 (row sums).

Programs

  • Mathematica
    A118403[n_]:=SeriesCoefficient[(1-2*x+2*x^2)*(1+x^2)/(1-x)^3,{x,0,n}]; T[n_,k_]:=If[1<=k<(A118403[n]+1)/2,n(n-1)-k+1,If[(A118403[n]+1)/2<=k<A118403[n],n(n-1)/2-k+(A118403[n]+1)/2,0]]; Table[T[n,k],{n,2,7},{k,A118403[n]}]//Flatten

Formula

T(n, k) = n*(n - 1) - k + 1 for 1 <= k < (A118403(n)+1)/2.
T(n, k) = n*(n - 1)/2 - k + (A118403(n)+1)/2 for (A118403(n)+1)/2 <= k < A118403(n).
T(n, A118403(n)) = 0.

A110195 a(n) = 11^((n^2-n)/2).

Original entry on oeis.org

1, 1, 11, 1331, 1771561, 25937424601, 4177248169415651, 7400249944258160101211, 144209936106499234037676064081, 30912680532870672635673352936887453361, 72890483685103052142902866787761839379440139451, 1890591424712781041871514584574319778449301246603238034051
Offset: 0

Views

Author

Philippe Deléham, Sep 07 2005

Keywords

Comments

Sequence given by the Hankel transform (see A001906 for definition) of A082173 = {1, 1, 12, 155, 2124, 30482, 453432, 6936799, ...}; example : det([1, 1, 12, 155; 1, 12, 155, 2124; 12, 155, 2124, 30482; 155, 2124, 30482, 453432]) = 11^6 = 1771561.

Crossrefs

Programs

  • Mathematica
    Table[11^((n^2-n)/2),{n,0,20}] (* Harvey P. Dale, Feb 02 2012 *)
    Join[{1,1},Table[Det[Table[Binomial[11i,j],{i,n},{j,n}]],{n,10}]] (* Harvey P. Dale, Apr 01 2019 *)

Formula

a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(11i, j).
a(n) = A001020(A161680(n)).

Extensions

a(11) from Harvey P. Dale, Feb 02 2012
a(12) from Jason Yuen, Aug 29 2025
Previous Showing 41-50 of 67 results. Next