cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A304444 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(2*n).

Original entry on oeis.org

1, 2, 14, 98, 726, 5512, 42614, 333608, 2636326, 20985272, 168012824, 1351507830, 10914317934, 88432329546, 718545161208, 5852747363518, 47774241056710, 390702055798978, 3200542803221192, 26257321971526646, 215705170816632376, 1774181109262878848
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; Table[SeriesCoefficient[Product[1/(1-x^k)^(2*n), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 25; Table[SeriesCoefficient[1/QPochhammer[x]^(2*n), {x, 0, n}], {n, 0, nmax}]
    (* Calculation of constants {d,c}: *) eq = FindRoot[{1/QPochhammer[r*s]^2 == s, 1/s + 2*r*Sqrt[s]*Derivative[0, 1][QPochhammer][r*s, r*s] == (2*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]))/(s* Log[r*s])}, {r, 1/8}, {s, 2}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[((1 - r*s)*Log[r*s]^2)/(Pi*(16*r*s*ArcTanh[1 - 2*r*s] - (-1 + r*s)*(Log[r*s] - 2*Log[1 - r*s])*(3*Log[r*s] - 2*Log[1 - r*s]) - 8*Log[1 - r*s] - 8*(-1 + r*s)*(-1 + 2*ArcTanh[1 - 2*r*s])* QPolyGamma[0, 1, r*s] + (4 - 4*r*s)* QPolyGamma[0, 1, r*s]^2 + 4*(-1 + r*s)*(QPolyGamma[1, 1, r*s] + r*s*Log[r*s] * (r*s^(3/2)*Log[r*s]* Derivative[0, 2][QPochhammer][r*s, r*s] - 2*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s]))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 8.42516721063251541777601555584151410936132980324698494327338254953123205... and c = 0.29923152009652750283923119244187982714171590056794904644563876...

A276551 Convolution square of A073592.

Original entry on oeis.org

1, -2, -3, 2, 6, 12, 1, -10, -32, -46, -24, 18, 96, 168, 213, 124, -61, -386, -734, -992, -957, -386, 685, 2288, 3939, 5158, 5012, 2930, -1853, -8888, -17283, -24782, -28312, -24422, -9825, 16674, 54197, 96584, 134729, 153718, 138624, 73438, -49526, -228614
Offset: 0

Views

Author

Seiichi Manyama, Apr 10 2017

Keywords

Crossrefs

Column k=2 of A276554.
Product_{k>0} (1-x^k)^(k*m): A161870 (m=-2), A073592 (m=1), this sequence (m=2), A276552 (m=3).

Formula

G.f.: Product_{k>0} (1-x^k)^(k*2).
G.f.: exp(-2*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A261384 Expansion of Product_{k>=1} (1+x^k)^(2*k-1) / (1-x^k)^(2*k).

Original entry on oeis.org

1, 3, 12, 39, 117, 331, 893, 2307, 5766, 13986, 33046, 76302, 172567, 383013, 835731, 1795236, 3801105, 7941439, 16386777, 33423342, 67435311, 134675784, 266385932, 522135379, 1014643823, 1955656848, 3740191268, 7100290646, 13383997996, 25058666367
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 17 2015

Keywords

Comments

Convolution of A161870 and A255835.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k-1)/(1-x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (7*Zeta(3))^(2/9) * exp(1/6 - Pi^4/(6048*Zeta(3)) - Pi^2 * n^(1/3) / (12*(7*Zeta(3))^(1/3)) + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) / (A^2 * 2^(1/6) * sqrt(3*Pi) * n^(13/18)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A321947 Column k=2 of triangle A257673.

Original entry on oeis.org

1, 6, 21, 62, 162, 396, 917, 2036, 4380, 9152, 18694, 37380, 73444, 141918, 270370, 508178, 943876, 1733468, 3151396, 5674152, 10126435, 17921016, 31468623, 54848750, 94935565, 163232096, 278903915, 473693432, 799949111, 1343550666, 2244807927, 3731885232
Offset: 2

Views

Author

Alois P. Heinz, Nov 22 2018

Keywords

Crossrefs

Column k=2 of A257673.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(2):
    seq(a(n), n=2..35);
  • Mathematica
    A321947[n_] := Module[{nn = n}, SeriesCoefficient[Product[1/(1 - x^i)^(2 i), {i, 1, nn}], {x, 0, nn}] - 2*SeriesCoefficient[Product[(1 - x^k)^-k, {k, nn}], {x, 0, nn}]]; Table[A321947[n], {n, 2, 33}] (* Robert P. P. McKone, Jan 30 2021 *)
    b[n_, k_] := b[n, k] = If[n == 0, 1, k*Sum[
         b[n - j, k]*DivisorSigma[2, j], {j, 1, n}]/n];
    a[n_] := With[{k = 2}, Sum[b[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]];
    Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)

Formula

G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^2. - Ilya Gutkovskiy, Jan 30 2021
a(n) = A161870(n) - 2*A000219(n). - Vaclav Kotesovec, Jan 30 2021

A383353 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n 2-colored objects are distributed into k containers of two kinds. Containers may be left empty.

Original entry on oeis.org

1, 2, 0, 3, 4, 0, 4, 8, 6, 0, 5, 12, 22, 8, 0, 6, 16, 38, 40, 10, 0, 7, 20, 54, 92, 73, 12, 0, 8, 24, 70, 144, 196, 112, 14, 0, 9, 28, 86, 196, 354, 376, 172, 16, 0, 10, 32, 102, 248, 512, 760, 678, 240, 18, 0, 11, 36, 118, 300, 670, 1200, 1554, 1136, 335, 20, 0
Offset: 0

Views

Author

Peter Dolland, Apr 24 2025

Keywords

Examples

			Array starts:
 0 : [1,  2,   3,    4,     5,     6,     7,      8,      9,     10,     11, ...]
 1 : [0,  4,   8,   12,    16,    20,    24,     28,     32,     36,     40, ...]
 2 : [0,  6,  22,   38,    54,    70,    86,    102,    118,    134,    150, ...]
 3 : [0,  8,  40,   92,   144,   196,   248,    300,    352,    404,    456, ...]
 4 : [0, 10,  73,  196,   354,   512,   670,    828,    986,   1144,   1302, ...]
 5 : [0, 12, 112,  376,   760,  1200,  1640,   2080,   2520,   2960,   3400, ...]
 6 : [0, 14, 172,  678,  1554,  2640,  3810,   4980,   6150,   7320,   8490, ...]
 7 : [0, 16, 240, 1136,  2936,  5436,  8272,  11228,  14184,  17140,  20096, ...]
 8 : [0, 18, 335, 1826,  5315, 10674, 17216,  24262,  31473,  38684,  45895, ...]
 9 : [0, 20, 440, 2812,  9136, 19984, 34192,  50248,  67024,  84020, 101016, ...]
10 : [0, 22, 578, 4186, 15188, 36024, 65512, 100488, 138188, 176878, 215854, ...]
...
		

Crossrefs

Antidiagonal sums give A161870.
Cf. A382345 (1-color), A381891 (1-kind), A026820 (1-color, 1-kind).
Cf. A278710.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (n+1)*x^n,
          add(b(n-i*j, min(n-i*j, i-1))*binomial(i+j, j)*x^j, j=0..n/i)))
        end:
    g:= proc(n, k) option remember;
          `if`(k<0, 0, g(n, k-1)+coeff(b(n$2), x, k))
        end:
    A:= (n, k)-> add(add(g(j, h)*g(n-j, k-h), h=0..k), j=0..n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, May 05 2025
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    def calc_w( k , m):
        s = 0
        for p in partitions( m, m=k+1):
            fact = 1
            j = k + 1
            for x in p :
                fact *= binomial( j, p[x]) * (x + 1) ** p[x]
                j -= p[x]
            s += fact
        return s
    def a_row( n, length=11):
        if n == 0 : return [ k + 1 for k in range( length) ]
        t = list( [0] * length)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= calc_w( k, p[k])
            if s > 0 :
                t[s - 1] += fact
        t = [0] + t
        for i in range( 1, length):
            t[i+1] += t[i] * 2 - t[i - 1]
        return t

Formula

A(0,k) = k + 1.
A(1,k) = 4*k.
A(2,k+1) = 6 + 16 * k.
A(n,1) = 2 + 2 * n.
A(n,n+k) = A(n,n) + k * A383352(n,n).
A(n,k) = Sum_{i=0..k} (k + 1 - i) * A383351(n,i) for 0 <= k <= n.
Sum_{k=0..n} (-1)^k*T(n-k,k) = A278710(n). - Alois P. Heinz, May 05 2025

A295828 Expansion of Product_{k>=1} 1/(1 - x^k)^(2*k*(2*k-1)).

Original entry on oeis.org

1, 2, 15, 58, 235, 862, 3122, 10664, 35639, 115164, 363806, 1122050, 3393316, 10068006, 29374056, 84347944, 238713339, 666419456, 1836986443, 5003473866, 13476019215, 35912177618, 94746481999, 247597696802, 641205816641, 1646268490598, 4192059724668, 10590937903412, 26556243826240
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Comments

Euler transform of A002939.

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^(2 k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[2 d^2 (2 d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A002939(k).
a(n) ~ exp(2^(5/2) * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - Zeta(3) * sqrt(15*n) / Pi^2 - 15^(5/4) * Zeta(3)^2 * n^(1/4) / (2^(3/2) * Pi^5) - Zeta(3) / Pi^2 - 75*Zeta(3)^3 / (2*Pi^8) - 1/6) * A^2 / (2^(4/3) * 15^(1/12) * Pi^(1/6) * n^(7/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

A360489 Convolution of A000219 and A001477.

Original entry on oeis.org

0, 1, 3, 8, 19, 43, 91, 187, 369, 711, 1335, 2459, 4442, 7904, 13851, 23965, 40958, 69248, 115872, 192097, 315652, 514485, 832112, 1336214, 2131099, 3377178, 5319290, 8330147, 12973662, 20100411, 30986772, 47542096, 72609729, 110410791, 167186826, 252138816, 378781852
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 09 2023

Keywords

Comments

In general, for 0 < p < 1, delta > 1, beta > -1, the convolution of (delta^(n^p) * n^alfa) and n^beta is asymptotic to delta^(n^p) * n^(alfa + (1-p)*(beta+1)) * Gamma(beta+1) / (p^(beta+1) * log(delta)^(beta+1)).
For p = 1 is the convolution of (delta^(n^p) * n^alfa) and n^beta asymptotic to delta^n * n^alfa * polylog(-beta, 1/delta).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> add(b(n-j)*j, j=0..n):
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 09 2023
  • Mathematica
    nmax = 50; CoefficientList[Series[x/(1-x)^2 * Product[1/(1 - x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = Sum_{k=0..n} A000219(k) * (n-k).
G.f.: x/(1-x)^2 * Product_{k>=1} 1/(1 - x^k)^k.
a(n) ~ exp(1/12 + 3*zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * sqrt(3*Pi) * 2^(35/36) * zeta(3)^(17/36) * n^(1/36)), where A is the Glaisher-Kinkelin constant A074962.
Previous Showing 11-17 of 17 results.