cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A165088 Smallest member of cycle corresponding to n-th term of A165087.

Original entry on oeis.org

0, 144, 1068, 9936, 55500, 640992, 3562968, 31412208, 228238488, 227429400, 220709400, 1922263344, 11432420652, 11150046252, 75796404672, 94197649008, 96503566608, 546394287000, 419850417612, 4615731883344, 3939440152944
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Initial terms in base 7: 0, 264, 3054, 40653, 320544, 5306532, 42166443, 530666532, 5440665222, 5431055322.

Crossrefs

In other bases: A163205 (base 2), A165010 (base 3), A165030 (base 4), A165049 (base 5), A165069 (base 6), A165108 (base 8), A165128 (base 9), A151965 (base 10).

A165089 Length of cycle corresponding to n-th term of A165087.

Original entry on oeis.org

1, 2, 3, 5, 6, 6, 6, 11, 2, 2, 2, 1, 5, 2, 6, 1, 1, 2, 9, 1, 2, 1, 1, 12, 2, 2, 1, 1, 1, 1, 2, 2, 1, 4, 2, 1, 1, 1, 1, 5, 7, 1, 2, 2, 2, 3, 1, 2, 1, 2, 2, 1, 1, 1, 1, 5, 2, 1, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 5, 5, 2, 1, 1, 2, 2, 1, 3, 3, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 24, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Crossrefs

In other bases: A000012 (base 2), A165011 (base 3), A165031 (base 4), A165050 (base 5), A165070 (base 6), A165109 (base 8), A165129 (base 9), A151966 (base 10).

A165077 Length of cycle mentioned in A165076.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 2, 2, 2, 2, 2, 2, 1, 2, 2, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 1, 6, 1, 9, 9, 9, 2, 2, 9, 9, 9, 9, 9, 9, 2, 1, 2, 1, 1, 2, 2, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 1, 2
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Crossrefs

In other bases: A000012 (base 2), A164999 (base 3), A165018 (base 4), A165038 (base 5), A165057 (base 6), A165096 (base 8), A165116 (base 9), A164717 (base 10).

A165079 Length of cycle mentioned in A165078.

Original entry on oeis.org

2, 2, 3, 3, 3, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 9, 9, 9, 2, 2, 9, 9, 9, 9, 9, 9, 2, 2, 2, 2, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 2, 2, 2, 2, 4, 4, 4, 2, 2
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Crossrefs

In other bases: Empty (base 2), A165001 (base 3), A165020 (base 4), A165040 (base 5), A165059 (base 6), A165098 (base 8), A165118 (base 9), A164715 (base 10).

A165081 Length of cycle mentioned in A165080.

Original entry on oeis.org

1, 2, 3, 5, 6, 6, 6, 11, 2, 2, 2, 1, 2, 5, 6, 1, 1, 9, 2, 2, 1, 1, 1, 2, 12, 1, 2, 1, 1, 1, 2, 4, 1, 2, 1, 2, 1, 1, 1, 2, 5, 7, 2, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 1, 1, 2, 5, 1, 2, 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 1, 1, 1, 2, 5, 5, 1, 1, 2, 1, 2, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 1, 1, 1, 2, 24, 1, 1, 1, 2
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Crossrefs

In other bases: A000012 (base 2), A165003 (base 3), A165022 (base 4), A165042 (base 5), A165061 (base 6), A165100 (base 8), A165120 (base 9), A164719 (base 10).

A165083 Length of cycle mentioned in A165082.

Original entry on oeis.org

2, 3, 5, 6, 6, 6, 11, 2, 2, 2, 2, 5, 6, 9, 2, 2, 2, 12, 2, 2, 4, 2, 2, 2, 5, 7, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 3, 2, 2, 2, 5, 5, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 24, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 7, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 25, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 2, 3, 2
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Crossrefs

In other bases: Empty (base 2), A165005 (base 3), A165024 (base 4), A165044 (base 5), A165063 (base 6), A165102 (base 8), A165122 (base 9), A164721 (base 10).

A008722 Molien series for 3-dimensional group [2,9] = *229.

Original entry on oeis.org

1, 0, 2, 0, 3, 0, 4, 0, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 11, 21, 13, 23, 15, 25, 17, 27, 19, 30, 21, 33, 23, 36, 25, 39, 27, 42, 30, 45, 33, 48, 36, 51, 39, 54, 42, 58, 45, 62, 48, 66, 51, 70, 54, 74, 58, 78, 62, 82, 66, 86, 70, 90, 74, 95, 78, 100, 82
Offset: 0

Views

Author

Keywords

Comments

It appears that a(n) is the number of (n+11)-digit fixed points under the base-7 Kaprekar map A165071 (see A165075 for the list of fixed points). - Joseph Myers, Sep 04 2009
a(n) is the number of partitions of n into parts 2 and 9 where there are two kinds of parts 2. - Hoang Xuan Thanh, Jun 20 2025

Programs

  • GAP
    a:=[1,0,2,0,3,0,4,0,5,1,6,2,7];; for n in [14..80] do a[n]:= 2*a[n-2] -a[n-4]+a[n-9]-2*a[n-11]+a[n-13]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^2)^2*(1-x^9)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    1/((1-x^2)^2*(1-x^9)); seq(coeff(series(%, x, n+1), x, n), n = 0..80); # modified by G. C. Greubel, Sep 09 2019
  • Mathematica
    LinearRecurrence[{0,2,0,-1,0,0,0,0,1,0,-2,0,1}, {1,0,2,0,3,0,4,0,5,1,6, 2,7}, 80] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/((1-x^2)^2*(1-x^9))) \\ G. C. Greubel, Sep 09 2019
    
  • Sage
    def A008722_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x^2)^2*(1-x^9)) ).list()
    A008722_list(80) # G. C. Greubel, Sep 09 2019
    

Formula

G.f.: 1/((1-x^2)^2*(1-x^9)).
a(n) = 2*a(n-2) - a(n-4) + a(n-9) - 2*a(n-11) + a(n-13). - R. J. Mathar, Dec 18 2014
a(n) = floor((n^2 + n*(13+9*(-1)^n) + 62*(-1)^n + 75)/72) - [(n mod 9)=7], where [] is Iverson bracket. - Hoang Xuan Thanh, Jun 20 2025

A319655 Write n in 7-ary, sort digits into increasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 11, 12, 13, 2, 9, 16, 17, 18, 19, 20, 3, 10, 17, 24, 25, 26, 27, 4, 11, 18, 25, 32, 33, 34, 5, 12, 19, 26, 33, 40, 41, 6, 13, 20, 27, 34, 41, 48, 1, 8, 9, 10, 11, 12, 13, 8, 57, 58, 59, 60, 61, 62, 9, 58, 65, 66, 67, 68, 69, 10, 59, 66, 73
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2018

Keywords

Crossrefs

b-ary: A038573 (b=2), A038574 (b=3), A319652 (b=4), A319653 (b=5), A319654 (b=6), this sequence (b=7), A319656 (b=8), A319657 (b=9), A004185 (b=10).

Programs

  • Maple
    a:= n-> (l-> add(l[-i]*7^(i-1), i=1..nops(l)))(sort(convert(n, base, 7))):
    seq(a(n), n=0..73);  # Alois P. Heinz, Aug 07 2024
  • Mathematica
    Table[FromDigits[Sort[IntegerDigits[n, 7]], 7], {n, 0, 100}] (* Paolo Xausa, Aug 07 2024 *)
  • PARI
    a(n) = fromdigits(vecsort(digits(n, 7)), 7); \\ Michel Marcus, Sep 25 2018
  • Ruby
    def A(k, n)
      (0..n).map{|i| i.to_s(k).split('').sort.join.to_i(k)}
    end
    p A(7, 100)
    

A319724 Write n in 7-ary, sort digits into decreasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 15, 22, 29, 36, 43, 14, 15, 16, 23, 30, 37, 44, 21, 22, 23, 24, 31, 38, 45, 28, 29, 30, 31, 32, 39, 46, 35, 36, 37, 38, 39, 40, 47, 42, 43, 44, 45, 46, 47, 48, 49, 56, 105, 154, 203, 252, 301, 56, 57, 106, 155, 204, 253, 302, 105, 106, 113, 162
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2018

Keywords

Crossrefs

b-ary: A073138 (b=2), A319651 (b=3), A319720 (b=4), A319722 (b=5), A319723 (b=6), this sequence (b=7), A319725 (b=8), A319726 (b=9), A004186 (b=10).

Programs

  • Mathematica
    Table[FromDigits[ReverseSort[IntegerDigits[n, 7]], 7], {n, 0, 100}] (* Paolo Xausa, Aug 07 2024 *)
  • PARI
    a(n) = fromdigits(vecsort(digits(n, 7), , 4), 7); \\ Michel Marcus, Sep 26 2018
  • Ruby
    def A(k, n)
      (0..n).map{|i| i.to_s(k).split('').sort.reverse.join.to_i(k)}
    end
    p A(7, 100)
    

Formula

n <= a(n) < 7n. - Charles R Greathouse IV, Aug 07 2024
Previous Showing 21-29 of 29 results.