cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 59 results. Next

A328188 Number of strict integer partitions of n with all pairs of consecutive parts relatively prime.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 12, 15, 15, 19, 23, 25, 30, 35, 39, 47, 52, 58, 65, 75, 86, 95, 109, 124, 144, 165, 181, 203, 221, 249, 285, 316, 352, 392, 438, 484, 538, 599, 666, 737, 813, 899, 992, 1102, 1215, 1335, 1472, 1621, 1776, 1946, 2137, 2336
Offset: 0

Views

Author

Gus Wiseman, Oct 13 2019

Keywords

Examples

			The a(1) = 1 through a(15) = 15 partitions (A..F = 10..15):
  1  2  3   4   5   6    7   8    9    A     B     C    D     E     F
        21  31  32  51   43  53   54   73    65    75   76    95    87
                41  321  52  71   72   91    74    B1   85    B3    B4
                         61  431  81   532   83    543  94    D1    D2
                             521  432  541   92    651  A3    653   E1
                                  531  721   A1    732  B2    743   654
                                       4321  731   741  C1    752   753
                                             5321  831  652   761   852
                                                   921  751   851   951
                                                        832   941   A32
                                                        5431  A31   B31
                                                        7321  B21   6531
                                                              5432  7431
                                                              6521  7521
                                                              8321  54321
		

Crossrefs

The case of compositions is A167606.
The non-strict case is A328172.
The Heinz numbers of these partitions are given by A328335.
Partitions with no pairs of consecutive parts relatively prime are A328187.

Programs

  • Maple
    b:= proc(n, i, s) option remember; `if`(i*(i+1)/2 igcd(i, j)=1, s), b(n-i, min(n-i, i-1),
               numtheory[factorset](i)), 0)+b(n, i-1, s)))
        end:
    a:= n-> b(n$2, {}):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 13 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MatchQ[#,{_,x_,y_,_}/;GCD[x,y]>1]&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, s_] := b[n, i, s] = If[i(i + 1)/2 < n, 0, If[n == 0, 1, If[AllTrue[s,  GCD[i, #] == 1&], b[n - i, Min[n - i, i - 1], FactorInteger[i][[All, 1]]], 0] + b[n, i - 1, s]]];
    a[n_] := b[n, n, {}];
    a /@ Range[0, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A328508 Number of compositions of n with no part divisible by the next or the prior.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 6, 4, 8, 14, 14, 27, 30, 55, 69, 97, 155, 200, 312, 421, 630, 893, 1260, 1864, 2600, 3813, 5395, 7801, 11196, 15971, 23126, 32917, 47514, 67993, 97670, 140334, 200913, 289147, 414119, 595109, 853751, 1225086, 1759405, 2523151, 3623984, 5198759
Offset: 0

Views

Author

Gus Wiseman, Oct 17 2019

Keywords

Examples

			The a(1) = 1 through a(11) = 14 compositions (A = 10, B = 11):
  (1)  (2)  (3)  (4)  (5)   (6)  (7)    (8)    (9)    (A)     (B)
                      (23)       (25)   (35)   (27)   (37)    (29)
                      (32)       (34)   (53)   (45)   (46)    (38)
                                 (43)   (323)  (54)   (64)    (47)
                                 (52)          (72)   (73)    (56)
                                 (232)         (234)  (235)   (65)
                                               (252)  (253)   (74)
                                               (432)  (325)   (83)
                                                      (343)   (92)
                                                      (352)   (254)
                                                      (523)   (272)
                                                      (532)   (353)
                                                      (2323)  (434)
                                                      (3232)  (452)
		

Crossrefs

The case of partitions is A328171.
If we only forbid parts to be divisible by the next, we get A328460.
Compositions with each part relatively prime to the next are A167606.
Compositions with no part relatively prime to the next are A178470.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,y_,_}/;Divisible[y,x]||Divisible[x,y]]&]],{n,0,10}]
  • PARI
    seq(n)={my(r=matid(n)); for(k=1, n, for(i=1, k-1, r[i,k]=sum(j=1, k-i, if(i%j && j%i, r[j, k-i])))); concat([1], vecsum(Col(r)))} \\ Andrew Howroyd, Oct 19 2019

Extensions

Terms a(26) and beyond from Andrew Howroyd, Oct 19 2019

A328600 Number of necklace compositions of n with no part circularly followed by a divisor.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 1, 3, 5, 5, 7, 10, 18, 20, 29, 40, 58, 78, 111, 156, 218, 304, 429, 604, 859, 1209, 1726, 2423, 3462, 4904, 7000, 9953, 14210, 20270, 28979, 41391, 59253, 84799, 121539, 174162, 249931, 358577, 515090, 739932, 1063826, 1529766, 2201382, 3168565
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.
Circularity means the last part is followed by the first.

Examples

			The a(5) = 1 through a(13) = 18 necklace compositions (empty column not shown):
  (2,3)  (2,5)  (3,5)  (2,7)    (3,7)      (2,9)    (5,7)      (4,9)
         (3,4)         (4,5)    (4,6)      (3,8)    (2,3,7)    (5,8)
                       (2,4,3)  (2,3,5)    (4,7)    (2,7,3)    (6,7)
                                (2,5,3)    (5,6)    (3,4,5)    (2,11)
                                (2,3,2,3)  (2,4,5)  (3,5,4)    (3,10)
                                                    (2,3,2,5)  (2,4,7)
                                                    (2,3,4,3)  (2,6,5)
                                                               (2,8,3)
                                                               (3,6,4)
                                                               (2,3,5,3)
		

Crossrefs

The non-necklace version is A328598.
The version with singletons is A318729.
The case forbidding multiples as well as divisors is A328601.
The non-necklace, non-circular version is A328460.
The version for co-primality (instead of divisibility) is A328602.
Necklace compositions are A008965.
Partitions with no part followed by a divisor are A328171.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]&]],{n,10}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
    seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->i%j<>0))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 26 2019

Formula

a(n) = A318729(n) - 1.

Extensions

Terms a(26) and beyond from Andrew Howroyd, Oct 26 2019

A328601 Number of necklace compositions of n with no part circularly followed by a divisor or a multiple.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 1, 2, 5, 4, 7, 6, 13, 14, 20, 30, 38, 50, 68, 97, 132, 176, 253, 328, 470, 631, 901, 1229, 1709, 2369, 3269, 4590, 6383, 8897, 12428, 17251, 24229, 33782, 47404, 66253, 92859, 130141, 182468, 256261, 359675, 505230, 710058, 997952, 1404214
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2019

Keywords

Comments

A necklace composition of n (A008965) is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.
Circularity means the last part is followed by the first.

Examples

			The a(5) = 1 through a(13) = 6 necklace compositions (empty column not shown):
  (2,3)  (2,5)  (3,5)  (2,7)  (3,7)      (2,9)  (5,7)      (4,9)
         (3,4)         (4,5)  (4,6)      (3,8)  (2,3,7)    (5,8)
                              (2,3,5)    (4,7)  (2,7,3)    (6,7)
                              (2,5,3)    (5,6)  (3,4,5)    (2,11)
                              (2,3,2,3)         (3,5,4)    (3,10)
                                                (2,3,2,5)  (2,3,5,3)
                                                (2,3,4,3)
		

Crossrefs

The non-necklace version is A328599.
The case forbidding divisors only is A328600 or A318729 (with singletons).
The non-necklace, non-circular version is A328508.
The version for co-primality (instead of indivisibility) is A328597.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]&&And@@Not/@Divisible@@@Reverse/@Partition[#,2,1,1]&]],{n,10}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
    seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->i%j<>0 && j%i<>0))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 26 2019

Formula

a(n) = A318730(n) - 1.

Extensions

Terms a(26) and beyond from Andrew Howroyd, Oct 26 2019

A328609 Number of compositions of n whose circularly adjacent parts are relatively prime.

Original entry on oeis.org

1, 1, 1, 3, 6, 12, 23, 42, 81, 150, 284, 534, 1004, 1882, 3532, 6630, 12459, 23406, 43951, 82537, 154998, 291087, 546673, 1026686, 1928117, 3621016, 6800299, 12771085, 23984328, 45042958, 84591338, 158863806, 298348612, 560303341, 1052258401, 1976157509
Offset: 0

Views

Author

Gus Wiseman, Oct 26 2019

Keywords

Comments

Circularity means the last part is followed by the first.

Examples

			The a(1) = 1 through a(6) = 23 compositions:
  (1)  (11)  (12)   (13)    (14)     (15)
             (21)   (31)    (23)     (51)
             (111)  (112)   (32)     (114)
                    (121)   (41)     (123)
                    (211)   (113)    (132)
                    (1111)  (131)    (141)
                            (311)    (213)
                            (1112)   (231)
                            (1121)   (312)
                            (1211)   (321)
                            (2111)   (411)
                            (11111)  (1113)
                                     (1131)
                                     (1212)
                                     (1311)
                                     (2121)
                                     (3111)
                                     (11112)
                                     (11121)
                                     (11211)
                                     (12111)
                                     (21111)
                                     (111111)
		

Crossrefs

The necklace version is A328597 or A318728 (with singletons).
The aperiodic version is A328670.
The Lyndon word version is A318745.
The version with singletons is A318748.
The non-circular version is A167606.
Relatively prime compositions are A000740.
Compositions with no part circularly followed by a divisor are A328598.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@CoprimeQ@@@Partition[#,2,1,1]&]],{n,10}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
    seq(n)={concat([1], sum(k=1, n, b(n, k, (i, j)->gcd(i, j)==1)))} \\ Andrew Howroyd, Nov 01 2019

Formula

a(n > 1) = A318748(n) - 1.

A353401 Number of integer compositions of n with all prime run-lengths.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 4, 3, 6, 9, 10, 18, 27, 35, 54, 83, 107, 176, 242, 354, 515, 774, 1070, 1648, 2332, 3429, 4984, 7326, 10521, 15591, 22517, 32908, 48048, 70044, 101903, 149081, 216973, 316289, 461959, 672664, 981356, 1431256, 2086901, 3041577, 4439226, 6467735
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(9) = 9 compositions (empty column indicated by dot, 0 is the empty composition):
  0   .  11   111   22   11111   33     11122     44       333
                                 222    22111     1133     11133
                                 1122   1111111   3311     33111
                                 2211             11222    111222
                                                  22211    222111
                                                  112211   1111122
                                                           1112211
                                                           1122111
                                                           2211111
		

Crossrefs

The case of runs equal to 2 is A003242 aerated.
The <= 1 version is A003242 ranked by A333489.
The version for parts instead of run-lengths is A023360, both A353429.
The version for partitions is A055923.
The > 1 version is A114901, ranked by A353427.
The <= 2 version is A128695, matching A335464.
The > 2 version is A353400, partitions A100405.
Words with all distinct run-lengths: A032020, A044813, A098859, A130091, A329739, A351013, A351017.
A005811 counts runs in binary expansion.
A008466 counts compositions with some part > 2.
A011782 counts compositions.
A167606 counts compositions with adjacent parts coprime.
A329738 counts uniform compositions, partitions A047966.

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(n=0, 1, add(`if`(i<>h, add(
         `if`(isprime(j), b(n-i*j, i), 0), j=2..n/i), 0), i=1..n/2))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 18 2022
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[Length/@Split[#],_?(!PrimeQ[#]&)]&]],{n,0,15}]

Extensions

a(21)-a(45) from Alois P. Heinz, May 18 2022

A318727 Number of integer compositions of n where adjacent parts are indivisible (either way) and the last and first part are also indivisible (either way).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 5, 3, 5, 13, 9, 23, 15, 37, 45, 63, 115, 131, 207, 265, 415, 603, 823, 1251, 1673, 2521, 3519, 5147, 7409, 10449, 15225, 21497, 31285, 44719, 64171, 92315, 131619, 190085, 271871, 391189, 560979, 804265, 1155977, 1656429, 2381307, 3414847
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(10) = 13 compositions:
  (10)
  (7,3) (3,7) (6,4) (4,6)
  (5,3,2) (5,2,3) (3,5,2) (3,2,5) (2,5,3) (2,3,5)
  (3,2,3,2) (2,3,2,3)
		

Crossrefs

Programs

  • Mathematica
    Table[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,({_,x_,y_,_}/;Divisible[x,y]||Divisible[y,x])|({y_,_,x_}/;Divisible[x,y]||Divisible[y,x])]&]//Length,{n,20}]
  • PARI
    b(n,k,pred)={my(M=matrix(n,n)); for(n=1, n, M[n,n]=pred(k,n); for(j=1, n-1, M[n,j]=sum(i=1, n-j, if(pred(i,j), M[n-j,i], 0)))); sum(i=1, n, if(pred(i,k), M[n,i], 0))}
    a(n)={1 + sum(k=1, n-1, b(n-k, k, (i,j)->i%j<>0&&j%i<>0))} \\ Andrew Howroyd, Sep 08 2018

Extensions

a(21)-a(28) from Robert Price, Sep 07 2018
Terms a(29) and beyond from Andrew Howroyd, Sep 08 2018

A328597 Number of necklace compositions of n where every pair of adjacent parts (including the last with the first) is relatively prime.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 21, 33, 57, 94, 167, 279, 491, 852, 1507, 2647, 4714, 8349, 14923, 26642, 47793, 85778, 154474, 278322, 502715, 908912, 1646205, 2984546, 5418652, 9847189, 17916000, 32625617, 59470539, 108493149, 198094482, 361965238, 661891579, 1211162270
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.

Examples

			The a(1) = 1 through a(7) = 12 necklace compositions:
  (1)  (1,1)  (1,2)    (1,3)      (1,4)        (1,5)          (1,6)
              (1,1,1)  (1,1,2)    (2,3)        (1,1,4)        (2,5)
                       (1,1,1,1)  (1,1,3)      (1,2,3)        (3,4)
                                  (1,1,1,2)    (1,3,2)        (1,1,5)
                                  (1,1,1,1,1)  (1,1,1,3)      (1,1,1,4)
                                               (1,2,1,2)      (1,1,2,3)
                                               (1,1,1,1,2)    (1,1,3,2)
                                               (1,1,1,1,1,1)  (1,2,1,3)
                                                              (1,1,1,1,3)
                                                              (1,1,2,1,2)
                                                              (1,1,1,1,1,2)
                                                              (1,1,1,1,1,1,1)
		

Crossrefs

The non-necklace version is A328609.
The non-necklace non-circular version is A167606.
The version with singletons is A318728.
The aperiodic case is A318745.
The indivisible (instead of coprime) version is A328600.
The non-coprime (instead of coprime) version is A328602.
Necklace compositions are A008965.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&And@@CoprimeQ@@@Partition[#,2,1,1]&]],{n,10}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
    seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->gcd(i,j)==1))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 26 2019

Formula

a(n > 1) = A318728(n) - 1.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Oct 26 2019

A328599 Number of compositions of n with no part circularly followed by a divisor or a multiple.

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 0, 4, 2, 4, 12, 8, 22, 14, 36, 44, 62, 114, 130, 206, 264, 414, 602, 822, 1250, 1672, 2520, 3518, 5146, 7408, 10448, 15224, 21496, 31284, 44718, 64170, 92314, 131618, 190084, 271870, 391188, 560978, 804264, 1155976, 1656428, 2381306, 3414846
Offset: 0

Views

Author

Gus Wiseman, Oct 25 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Circularity means the last part is followed by the first.

Examples

			The a(0) = 1 through a(12) = 22 compositions (empty columns not shown):
  ()  (2,3)  (2,5)  (3,5)  (2,7)  (3,7)      (2,9)  (5,7)
      (3,2)  (3,4)  (5,3)  (4,5)  (4,6)      (3,8)  (7,5)
             (4,3)         (5,4)  (6,4)      (4,7)  (2,3,7)
             (5,2)         (7,2)  (7,3)      (5,6)  (2,7,3)
                                  (2,3,5)    (6,5)  (3,2,7)
                                  (2,5,3)    (7,4)  (3,4,5)
                                  (3,2,5)    (8,3)  (3,5,4)
                                  (3,5,2)    (9,2)  (3,7,2)
                                  (5,2,3)           (4,3,5)
                                  (5,3,2)           (4,5,3)
                                  (2,3,2,3)         (5,3,4)
                                  (3,2,3,2)         (5,4,3)
                                                    (7,2,3)
                                                    (7,3,2)
                                                    (2,3,2,5)
                                                    (2,3,4,3)
                                                    (2,5,2,3)
                                                    (3,2,3,4)
                                                    (3,2,5,2)
                                                    (3,4,3,2)
                                                    (4,3,2,3)
                                                    (5,2,3,2)
		

Crossrefs

The necklace version is A328601.
The case forbidding only divisors (not multiples) is A328598.
The non-circular version is A328508.
Partitions with no part followed by a divisor are A328171.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Not/@Divisible@@@Partition[#,2,1,1]&&And@@Not/@Divisible@@@Reverse/@Partition[#,2,1,1]&]],{n,0,10}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
    seq(n)={concat([1], sum(k=1, n, b(n, k, (i,j)->i%j<>0&&j%i<>0)))} \\ Andrew Howroyd, Oct 26 2019

Extensions

Terms a(26) and beyond from Andrew Howroyd, Oct 26 2019

A318745 Number of Lyndon compositions (aperiodic necklaces of positive integers) with sum n and adjacent parts (including the last with the first part) being coprime.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 19, 32, 53, 94, 158, 279, 480, 847, 1487, 2647, 4676, 8349, 14865, 26630, 47700, 85778, 154290, 278318, 502437, 908880, 1645713, 2984546, 5417743, 9847189, 17914494, 32625523, 59467893, 108493134, 198089610, 361965238, 661883231, 1211161991
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(7) = 12 Lyndon compositions with adjacent parts coprime:
  (7)
  (16) (25) (34)
  (115)
  (1114) (1213) (1132) (1123)
  (11113) (11212)
  (111112)
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,LyndonQ[#]&&And@@CoprimeQ@@@Partition[#,2,1,1]]&]],{n,20}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
    seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->gcd(i, j)==1))); vector(n, n, (n > 1) + sumdiv(n, d, moebius(d)*v[n/d])/n)} \\ Andrew Howroyd, Nov 01 2019

Formula

a(n) = A328669(n) + 1 for n > 1. - Andrew Howroyd, Nov 01 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018
Previous Showing 41-50 of 59 results. Next