A167900
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799452, 2533274790395328, 20266198323160356, 162129586585264704
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,-28).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-8*x+35*x^16-28*x^17) )); // G. C. Greubel, Dec 06 2024
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-8*t+35*t^16-28*t^17), {t,0,50}], t] (* G. C. Greubel, Jul 01 2016; Dec 06 2024 *)
coxG[{16,28,-7}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
-
def A167900_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-8*x+35*x^16-28*x^17) ).list()
print(A167900_list(40)) # G. C. Greubel, Dec 06 2024
A167908
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946445, 18530201888517600, 166771816996654800
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,-36).
-
R:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( (1+x)*(1-x^16)/(1-9*x+44*x^16-36*x^17) )); // G. C. Greubel, Jul 23 2024
-
With[{a=36, b=8}, CoefficientList[Series[(1+t)*(1-t^16)/(1-(b+1)*t +(a + b)*t^16 -a*t^17), {t,0,40}], t]] (* G. C. Greubel, Jul 01 2016; Jul 23 2024 *)
coxG[{16,36,-8}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 04 2017 *)
-
def A167908_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-9*x+44*x^16-36*x^17) ).list()
A167908_list(30) # G. C. Greubel, Jul 23 2024
A167914
Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 10999999999999945, 109999999999998900
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,-45).
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+x)*(1-x^16)/(1-10*x+54*x^16-45*x^17) )); // G. C. Greubel, Dec 04 2024
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-10*t+54*t^16-45*t^17), {t,0,50}], t] (* G. C. Greubel, Jul 01 2016; Dec 04 2024 *)
coxG[{16,45,-9}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 04 2024 *)
-
def A167914_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-10*x+54*x^16-45*x^17) ).list()
A167914_list(40) # G. C. Greubel, Dec 04 2024
A167916
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987746, 551396758362864480
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,-55).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^16)/(1-11*x+65*x^16-55*x^17) )); // G. C. Greubel, Nov 10 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-11*t+65*t^16-55*t^17), {t,0,50}], t] (* G. C. Greubel, Jul 01 2016; Nov 10 2023 *)
coxG[{16,55,-10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Nov 10 2023 *)
-
def A167916_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-11*x+65*x^16-55*x^17) ).list()
A167916_list(30) # G. C. Greubel, Nov 10 2023
A167923
Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183255
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,-91).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-14*x+104*x^16-91*x^17) )); // G. C. Greubel, Sep 10 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-14*t+104*t^16-91*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
coxG[{16,91,-13}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 22 2020 *)
-
def A167955_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-14*x+104*x^16-91*x^17) ).list()
A167955_list(40) # G. C. Greubel, Sep 10 2023
A167924
Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093750000, 9226406250000, 138396093750000, 2075941406250000, 31139121093750000, 467086816406250000, 7006302246093749880
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,-105).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-15*x+119*x^16-105*x^17) )); // G. C. Greubel, Sep 10 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-15*t+119*t^16-105*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
coxG[{16,105,-14}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 10 2017 *)
-
def A167924_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-15*x+119*x^16-105*x^17) ).list()
A167924_list(40) # G. C. Greubel, Sep 10 2023
A167938
Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 24, 552, 12696, 292008, 6716184, 154472232, 3552861336, 81715810728, 1879463646744, 43227663875112, 994236269127576, 22867434189934248, 525950986368487704, 12096872686475217192, 278228071788929995416
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,-253).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) )); // G. C. Greubel, Sep 09 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-23*t+275*t^16-253*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 09 2023 *)
coxG[{16,253,-22}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 18 2022 *)
-
def A167938_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) ).list()
A167938_list(40) # G. C. Greubel, Sep 09 2023
A167940
Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 25, 600, 14400, 345600, 8294400, 199065600, 4777574400, 114661785600, 2751882854400, 66045188505600, 1585084524134400, 38042028579225600, 913008685901414400, 21912208461633945600, 525893003079214694400
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,-276).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-24*x+299*x^16-276*x^17) )); // G. C. Greubel, Sep 08 2023
-
coxG[{16,276,-23}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 05 2015 *)
CoefficientList[Series[(1+t)*(1-t^16)/(1-24*t+299*t^16-276*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 08 2023 *)
-
def A167940_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-24*x+299*x^16-276*x^17) ).list()
A167940_list(40) # G. C. Greubel, Sep 08 2023
A167947
Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 32, 992, 30752, 953312, 29552672, 916132832, 28400117792, 880403651552, 27292513198112, 846067909141472, 26228105183385632, 813071260684954592, 25205209081233592352, 781361481518241362912, 24222205927065482250272
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,-465).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-31*x+495*x^16-465*x^17) )); // G. C. Greubel, Sep 07 2023
-
coxG[{16,465,-30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 16 2015 *)
CoefficientList[Series[(1+t)*(1-t^16)/(1-31*t+495*t^16-465*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016; Sep 07 2023 *)
-
def A167947_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-31*x+495*x^16-465*x^17) ).list()
A167947_list(40) # G. C. Greubel, Sep 07 2023
A167949
Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 33, 1056, 33792, 1081344, 34603008, 1107296256, 35433480192, 1133871366144, 36283883716608, 1161084278931456, 37154696925806592, 1188950301625810944, 38046409652025950208, 1217485108864830406656, 38959523483674573012992
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,-496).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-32*x+527*x^16-496*x^17) )); // G. C. Greubel, Sep 07 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-32*t+527*t^16-496*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016; Sep 07 2023 *)
coxG[{16,496,-31}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 22 2020 *)
-
def A167949_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-32*x+527*x^16-496*x^17) ).list()
A167949_list(40) # G. C. Greubel, Sep 07 2023
Comments