cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 1233 results. Next

A162851 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 37, 1332, 47286, 1678320, 59557050, 2113447770, 74997827100, 2661373678950, 94441530616650, 3351353019273000, 118926143828399250, 4220214225380039250, 149758560520153357500, 5314333645481777358750, 188584492248078150341250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[37, 1332, 47286];; for n in [4..20] do a[n]:=35*a[n-1]+ 35*a[n-2]-630*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 +2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{35, 35, -630}, {1, 37, 1332}, 20] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 630, -35}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1-36*x+665*x^3-630*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
    

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(630*t^3 - 35*t^2 - 35*t + 1).
G.f.: (1+x)*(1-x^3)/(1 - 36*x + 665*x^3 - 630*x^4). - G. C. Greubel, Apr 26 2019
a(n) = 35*a(n-1)+35*a(n-2)-630*a(n-3). - Wesley Ivan Hurt, May 05 2021

A162858 Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 38, 1406, 51319, 1872792, 68331600, 2493179658, 90967125816, 3319062151464, 121100596329852, 4418523599533920, 161215975658220768, 5882188976123487336, 214619841546851901024, 7830703259038738949472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170757, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[38,1406,51319];; for n in [4..20] do a[n]:=36*a[n-1]+36*a[n-2]-666*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 25 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(666*x^3-36*x^2-36*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 666, -36}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -37*x +702*x^3 -666*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(666*t^3 - 36*t^2 - 36*t + 1).
a(n) = 36*a(n-1) + 36*a(n-2) - 666*a(n-3), n > 0. - Muniru A Asiru, Oct 25 2018
G.f.: (1+x)*(1-x^3)/(1 - 37*x + 702*x^3 - 666*x^4). - G. C. Greubel, Apr 27 2019

A162871 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 39, 1482, 55575, 2083692, 78111033, 2928135600, 109766289945, 4114781688966, 154249795892907, 5782323668697966, 216760526662519203, 8125647855742321632, 304604136609884440797, 11418619374984439210164
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170758, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[39,1482,55575];; for n in [4..15] do a[n]:=37*a[n-1]+37*a[n-2]-703*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(703*x^3-37*x^2-37*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    coxG[{3,703,-37}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 25 2018 *)
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -38*x +740*x^3 -703*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(703*t^3 - 37*t^2 - 37*t + 1).
a(n) = 37*a(n-1) + 37*a(n-2) - 703*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 38*x + 740*x^3 - 703*x^4). - G. C. Greubel, Apr 27 2019

A162877 Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 40, 1560, 60060, 2311920, 88979280, 3424561140, 131801403240, 5072652999960, 195231667516860, 7513899339838320, 289188142406526480, 11130010920731869140, 428361764988438838440, 16486399071025250766360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170759, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[40,1560,60060];; for n in [4..20] do a[n]:=38*a[n-1]+38*a[n-2] -741*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(741*x^3-38*x^2-38*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    coxG[{3,741,-38}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 29 2017 *)
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -39*x +779*x^3 -741*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(741*t^3 - 38*t^2 - 38*t + 1).
a(n) = 38*a(n-1) + 38*a(n-2) - 741*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 39*x + 779*x^3 - 741*x^4). - G. C. Greubel, Apr 27 2019

A162878 Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 41, 1640, 64780, 2558400, 101024820, 3989217180, 157523886000, 6220211664420, 245620097065980, 9698903409405600, 382984651654144020, 15123074971766970780, 597171180654087109200, 23580747941118076783620
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170760, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[41,1640,64780];; for n in [4..20] do a[n]:=39*a[n-1]+39*a[n-2] -780*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(780*t^3-39*t^2-39*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(780*x^3-39*x^2-39*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(780*t^3-39*t^2-39*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 780, -39}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(780*t^3-39*t^2-39*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1-40*x+819*x^3-780*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(780*t^3 - 39*t^2 - 39*t + 1).
a(n) = 39*a(n-1) + 39*a(n-2) - 780*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 40*x + 819*x^3 - 780*x^4). - G. C. Greubel, Apr 27 2019

A162879 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 42, 1722, 69741, 2824080, 114340800, 4629407580, 187434189600, 7588784431200, 307252630616400, 12439960566432000, 503665724648352000, 20392280251485912000, 825637071380896320000, 33428168171083640640000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • GAP
    a:=[42,1722,69741];; for n in [4..20] do a[n]:=40*a[n-1]+40*a[n-2] -820*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    I:=[1,42,1722,69741]; [n le 4 select I[n] else 40*Self(n-1) +40*Self(n-2)-820*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 14 2017
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 +2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(820*x^3-40*x^2-40*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1), {t, 0, 20}], t] (* Wesley Ivan Hurt, Apr 12 2017 *)
    Join[{1}, LinearRecurrence[{40, 40, -820}, {42, 1722, 69741}, 20]] (* Vincenzo Librandi, Apr 14 2017 *)
    coxG[{3, 820, -40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -41*x +860*x^3 -820*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(820*t^3 - 40*t^2 - 40*t + 1).
a(n) = 40*a(n-1) + 40*a(n-2) - 820*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 41*x + 860*x^3 - 820*x^4). - G. C. Greubel, Apr 27 2019

A162881 Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 43, 1806, 74949, 3109932, 129025155, 5353007478, 222085686501, 9213895794684, 382266301290027, 15859472304395790, 657978118553895573, 27298209939779232636, 1132548704737573481379, 46987204341696557186262
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170762, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[43,1806,74949];; for n in [4..20] do a[n]:=41*a[n-1]+41*a[n-2] -861*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(861*t^3-41*t^2-41*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(861*x^3-41*x^2-41*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(861*t^3-41*t^2-41*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 861, -41}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(861*t^3-41*t^2-41*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -42*x +902*x^3 -861*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(861*t^3 - 41*t^2 - 41*t + 1).
a(n) = 41*a(n-1) + 41*a(n-2) - 861*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 -42*x + 902*x^3 - 861*x^4). - G. C. Greubel, Apr 27 2019

A162882 Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 44, 1892, 80410, 3416952, 145180728, 6168492330, 262088760780, 11135706433236, 473137249574682, 20102798001348216, 854133737629549608, 36290691560131770762, 1541929835910758016492, 65513979388697887768644
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170763, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[44,1892,80410];; for n in [4..20] do a[n]:=42*a[n-1]+42*a[n-2] -903*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(903*x^3-42*x^2-42*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 903, -42}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -43*x +945*x^3 -903*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(903*t^3 - 42*t^2 - 42*t + 1).
a(n) = 42*a(n-1) + 42*a(n-2) - 903*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 43*x + 945*x^3 - 903*x^4). - G. C. Greubel, Apr 27 2019

A162885 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 45, 1980, 86130, 3746160, 162915390, 7084967670, 308115104220, 13399485132330, 582724430755830, 25341851494598760, 1102080851855063190, 47927918932540448670, 2084316599215116583020, 90643945794494362584930
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170764, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[45,1980,86130];; for n in [4..20] do a[n]:=43*a[n-1]+43*a[n-2] -946*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!(( t^3+ 2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(946*x^3-43*x^2-43*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1-44*x+990*x^3-946*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(946*t^3 - 43*t^2 - 43*t + 1).
a(n) = 43*a(n-1) + 43*a(n-2) - 946*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 44*x + 990*x^3 - 946*x^4). - G. C. Greubel, Apr 28 2019

A162889 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 46, 2070, 92115, 4098600, 182342160, 8112199590, 360902223000, 16056115855560, 714317717862540, 31779155482826400, 1413817266133308960, 62899068010426041240, 2798305588240613272800, 124493325781573753947360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[46,2070,92115];; for n in [4..20] do a[n]:=44*a[n-1]+44*a[n-2] - 990*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 990, -44}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1-45*x+1034*x^3-990*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(990*t^3 - 44*t^2 - 44*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 44*a(n-1) + 44*a(n-2) - 990*a(n-3).
G.f.: (1+x)*(1-x^3)/(1 - 45*x + 1034*x^3 - 990*x^4). (End)
Previous Showing 61-70 of 1233 results. Next