A162851
Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 37, 1332, 47286, 1678320, 59557050, 2113447770, 74997827100, 2661373678950, 94441530616650, 3351353019273000, 118926143828399250, 4220214225380039250, 149758560520153357500, 5314333645481777358750, 188584492248078150341250
Offset: 0
-
a:=[37, 1332, 47286];; for n in [4..20] do a[n]:=35*a[n-1]+ 35*a[n-2]-630*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 26 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 +2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1))); // G. C. Greubel, Oct 24 2018
-
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{35, 35, -630}, {1, 37, 1332}, 20] (* G. C. Greubel, Oct 24 2018 *)
coxG[{3, 630, -35}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
-
my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1)) \\ G. C. Greubel, Oct 24 2018
-
((1+x)*(1-x^3)/(1-36*x+665*x^3-630*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A162858
Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 38, 1406, 51319, 1872792, 68331600, 2493179658, 90967125816, 3319062151464, 121100596329852, 4418523599533920, 161215975658220768, 5882188976123487336, 214619841546851901024, 7830703259038738949472
Offset: 0
-
a:=[38,1406,51319];; for n in [4..20] do a[n]:=36*a[n-1]+36*a[n-2]-666*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 25 2018
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1))); // G. C. Greubel, Oct 24 2018
-
seq(coeff(series((x^3+2*x^2+2*x+1)/(666*x^3-36*x^2-36*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 25 2018
-
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
coxG[{3, 666, -36}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
-
my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1)) \\ G. C. Greubel, Oct 24 2018
-
((1+x)*(1-x^3)/(1 -37*x +702*x^3 -666*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A162871
Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 39, 1482, 55575, 2083692, 78111033, 2928135600, 109766289945, 4114781688966, 154249795892907, 5782323668697966, 216760526662519203, 8125647855742321632, 304604136609884440797, 11418619374984439210164
Offset: 0
-
a:=[39,1482,55575];; for n in [4..15] do a[n]:=37*a[n-1]+37*a[n-2]-703*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1))); // G. C. Greubel, Oct 24 2018
-
seq(coeff(series((x^3+2*x^2+2*x+1)/(703*x^3-37*x^2-37*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
-
coxG[{3,703,-37}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 25 2018 *)
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
-
my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1)) \\ G. C. Greubel, Oct 24 2018
-
((1+x)*(1-x^3)/(1 -38*x +740*x^3 -703*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019
A162877
Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 40, 1560, 60060, 2311920, 88979280, 3424561140, 131801403240, 5072652999960, 195231667516860, 7513899339838320, 289188142406526480, 11130010920731869140, 428361764988438838440, 16486399071025250766360
Offset: 0
-
a:=[40,1560,60060];; for n in [4..20] do a[n]:=38*a[n-1]+38*a[n-2] -741*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1))); // G. C. Greubel, Oct 24 2018
-
seq(coeff(series((x^3+2*x^2+2*x+1)/(741*x^3-38*x^2-38*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
-
coxG[{3,741,-38}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 29 2017 *)
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
-
my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1)) \\ G. C. Greubel, Oct 24 2018
-
((1+x)*(1-x^3)/(1 -39*x +779*x^3 -741*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019
A162878
Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 41, 1640, 64780, 2558400, 101024820, 3989217180, 157523886000, 6220211664420, 245620097065980, 9698903409405600, 382984651654144020, 15123074971766970780, 597171180654087109200, 23580747941118076783620
Offset: 0
-
a:=[41,1640,64780];; for n in [4..20] do a[n]:=39*a[n-1]+39*a[n-2] -780*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(780*t^3-39*t^2-39*t+1))); // G. C. Greubel, Oct 24 2018
-
seq(coeff(series((x^3+2*x^2+2*x+1)/(780*x^3-39*x^2-39*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
-
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(780*t^3-39*t^2-39*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
coxG[{3, 780, -39}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
-
my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(780*t^3-39*t^2-39*t+1)) \\ G. C. Greubel, Oct 24 2018
-
((1+x)*(1-x^3)/(1-40*x+819*x^3-780*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019
A162879
Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 42, 1722, 69741, 2824080, 114340800, 4629407580, 187434189600, 7588784431200, 307252630616400, 12439960566432000, 503665724648352000, 20392280251485912000, 825637071380896320000, 33428168171083640640000
Offset: 0
-
a:=[42,1722,69741];; for n in [4..20] do a[n]:=40*a[n-1]+40*a[n-2] -820*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
-
I:=[1,42,1722,69741]; [n le 4 select I[n] else 40*Self(n-1) +40*Self(n-2)-820*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 14 2017
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 +2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1))); // G. C. Greubel, Oct 24 2018
-
seq(coeff(series((x^3+2*x^2+2*x+1)/(820*x^3-40*x^2-40*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
-
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1), {t, 0, 20}], t] (* Wesley Ivan Hurt, Apr 12 2017 *)
Join[{1}, LinearRecurrence[{40, 40, -820}, {42, 1722, 69741}, 20]] (* Vincenzo Librandi, Apr 14 2017 *)
coxG[{3, 820, -40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
-
my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1)) \\ G. C. Greubel, Oct 24 2018
-
((1+x)*(1-x^3)/(1 -41*x +860*x^3 -820*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019
A162881
Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 43, 1806, 74949, 3109932, 129025155, 5353007478, 222085686501, 9213895794684, 382266301290027, 15859472304395790, 657978118553895573, 27298209939779232636, 1132548704737573481379, 46987204341696557186262
Offset: 0
-
a:=[43,1806,74949];; for n in [4..20] do a[n]:=41*a[n-1]+41*a[n-2] -861*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(861*t^3-41*t^2-41*t+1))); // G. C. Greubel, Oct 24 2018
-
seq(coeff(series((x^3+2*x^2+2*x+1)/(861*x^3-41*x^2-41*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
-
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(861*t^3-41*t^2-41*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
coxG[{3, 861, -41}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
-
my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(861*t^3-41*t^2-41*t+1)) \\ G. C. Greubel, Oct 24 2018
-
((1+x)*(1-x^3)/(1 -42*x +902*x^3 -861*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019
A162882
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 44, 1892, 80410, 3416952, 145180728, 6168492330, 262088760780, 11135706433236, 473137249574682, 20102798001348216, 854133737629549608, 36290691560131770762, 1541929835910758016492, 65513979388697887768644
Offset: 0
-
a:=[44,1892,80410];; for n in [4..20] do a[n]:=42*a[n-1]+42*a[n-2] -903*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1))); // G. C. Greubel, Oct 24 2018
-
seq(coeff(series((x^3+2*x^2+2*x+1)/(903*x^3-42*x^2-42*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
-
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
coxG[{3, 903, -42}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
-
my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1)) \\ G. C. Greubel, Oct 24 2018
-
((1+x)*(1-x^3)/(1 -43*x +945*x^3 -903*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019
A162885
Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 45, 1980, 86130, 3746160, 162915390, 7084967670, 308115104220, 13399485132330, 582724430755830, 25341851494598760, 1102080851855063190, 47927918932540448670, 2084316599215116583020, 90643945794494362584930
Offset: 0
-
a:=[45,1980,86130];; for n in [4..20] do a[n]:=43*a[n-1]+43*a[n-2] -946*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!(( t^3+ 2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1))); // G. C. Greubel, Oct 24 2018
-
seq(coeff(series((x^3+2*x^2+2*x+1)/(946*x^3-43*x^2-43*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
-
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
coxG[{3, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
-
my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1)) \\ G. C. Greubel, Oct 24 2018
-
((1+x)*(1-x^3)/(1-44*x+990*x^3-946*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
A162889
Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 46, 2070, 92115, 4098600, 182342160, 8112199590, 360902223000, 16056115855560, 714317717862540, 31779155482826400, 1413817266133308960, 62899068010426041240, 2798305588240613272800, 124493325781573753947360
Offset: 0
-
a:=[46,2070,92115];; for n in [4..20] do a[n]:=44*a[n-1]+44*a[n-2] - 990*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1))); // G. C. Greubel, Oct 24 2018
-
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
coxG[{3, 990, -44}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
-
my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1)) \\ G. C. Greubel, Oct 24 2018
-
((1+x)*(1-x^3)/(1-45*x+1034*x^3-990*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
Comments