cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A168694 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

Original entry on oeis.org

1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398592
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 313594649253062377336, A170736(17) = 313594649253062377472. - Klaus Brockhaus, Mar 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170736 (G.f.: (1+x)/(1-16*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[16]]+t^17+1,den=Total[-15 t^Range[16]]+ 120t^17+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jun 04 2012 *)
    CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^17 - 15*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 03 2016 *)

Formula

G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (120*t^17 - 15*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).

A168742 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

Original entry on oeis.org

1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398592
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
First disagreement at index 18: a(18) = 5017514388048998039416, A170736(18) = 5017514388048998039552. - Klaus Brockhaus, Mar 27 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170736 (G.f.: (1+x)/(1-16*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^18 - 15*t^17 - 15*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 10 2016 *)
    coxG[{18,120,-15}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 26 2017 *)

Formula

G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^18 - 15*t^17 - 15*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).

A168790 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.

Original entry on oeis.org

1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398592
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 80280230208783968632696, A170736(19) = 80280230208783968632832. - Klaus Brockhaus, Mar 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170736 (G.f.: (1+x)/(1-16*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^19 - 15*t^18 - 15*t^17 - 15*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 15 2016 *)

Formula

G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^19 - 15*t^18 - 15*t^17 - 15*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).

A170074 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.

Original entry on oeis.org

1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398592
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[36]]+t^37+1,den=Total[-15 t^Range[36]]+120t^37+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Oct 03 2013 *)

Formula

G.f. (t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^37 - 15*t^36 - 15*t^35 -
15*t^34 - 15*t^33 - 15*t^32 - 15*t^31 - 15*t^30 - 15*t^29 - 15*t^28 -
15*t^27 - 15*t^26 - 15*t^25 - 15*t^24 - 15*t^23 - 15*t^22 - 15*t^21 -
15*t^20 - 15*t^19 - 15*t^18 - 15*t^17 - 15*t^16 - 15*t^15 - 15*t^14 -
15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 -
15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1)

A170698 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398592
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 136. - Vincenzo Librandi, Dec 08 2012

Programs

  • Mathematica
    With[{num=Total[2 t^Range[49]] + t^50 + 1, den=Total[-15 t^Range[49]] + 120 t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 30}],t]] (* Harvey P. Dale, Dec 02 2012 *)

Formula

G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(120*t^50 - 15*t^49 - 15*t^48 - 15*t^47 - 15*t^46 - 15*t^45 -
15*t^44 - 15*t^43 - 15*t^42 - 15*t^41 - 15*t^40 - 15*t^39 - 15*t^38 -
15*t^37 - 15*t^36 - 15*t^35 - 15*t^34 - 15*t^33 - 15*t^32 - 15*t^31 -
15*t^30 - 15*t^29 - 15*t^28 - 15*t^27 - 15*t^26 - 15*t^25 - 15*t^24 -
15*t^23 - 15*t^22 - 15*t^21 - 15*t^20 - 15*t^19 - 15*t^18 - 15*t^17 -
15*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 -
15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 -
15*t + 1).

A162803 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 17, 272, 4216, 65280, 1009800, 15620280, 241617600, 3737392200, 57810713400, 894227472000, 13832085717000, 213957412227000, 3309535172520000, 51192538485165000, 791856215398035000, 12248587087545600000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(120*t^3 - 15*t^2 - 15*t + 1)

A163093 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 17, 272, 4352, 69496, 1109760, 17721480, 282988800, 4518961080, 72161899200, 1152331158600, 18401221627200, 293843444945400, 4692295538064000, 74929823330517000, 1196531288107632000, 19107039891249747000, 305114439575750760000, 4872278582526960045000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^4 + 2 t^3 + 2 t^2 + 2 t + 1)/(120 t^4 - 15 t^3 - 15 t^2 - 15 t + 1), {t, 0, 20}], t] (* Jinyuan Wang, Mar 23 2020 *)

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).

Extensions

More terms from Jinyuan Wang, Mar 23 2020

A164628 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 17, 272, 4352, 69632, 1114112, 17825792, 285212536, 4563398400, 73014339720, 1168228880640, 18691653212160, 299066309345280, 4785058676736000, 76560902463178680, 1224973857577579200, 19599572411913213000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).

A164868 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402616, 73014439680, 1168231000200, 18691695448320, 299067118295040, 4785073750671360, 76561177737953280, 1224978807442636800, 19599660337248356280
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^8 -
15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1)

A165321 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014443896, 1168231100160, 18691697567880, 299067160531200, 4785074559621120, 76561192811888640, 1224979082717429760, 19599665287114260480
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(120*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 -
15*t^2 - 15*t + 1)
Previous Showing 11-20 of 49 results. Next