cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A168745 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

Original entry on oeis.org

1, 20, 380, 7220, 137180, 2606420, 49521980, 940917620, 17877434780, 339671260820, 6453753955580, 122621325156020, 2329805177964380, 44266298381323220, 841059669245141180, 15980133715657682420
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
First disagreement at index 18: a(18) = 109607737155696043718590, A170739(18) = 109607737155696043718780. - Klaus Brockhaus, Mar 27 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170739 (G.f.: (1+x)/(1-19*x)).

Programs

  • Mathematica
    coxG[{18,171,-18}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 01 2015 *)
    CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^18 - 18*t^17 - 18*t^16 - 18*t^15 - 18*t^14 - 18*t^13 - 18*t^12 - 18*t^11 - 18*t^10 - 18*t^9 - 18*t^8 - 18*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 10 2016 *)

Formula

G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^18 - 18*t^17 - 18*t^16 - 18*t^15 - 18*t^14 - 18*t^13 -18*t^12 - 18*t^11 - 18*t^10 - 18*t^9 - 18*t^8 - 18*t^7 - 18*t^6 - 18*t^5- 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1).

A168793 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.

Original entry on oeis.org

1, 20, 380, 7220, 137180, 2606420, 49521980, 940917620, 17877434780, 339671260820, 6453753955580, 122621325156020, 2329805177964380, 44266298381323220, 841059669245141180, 15980133715657682420
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 2082547005958224830656630, A170739(19) = 2082547005958224830656820. - Klaus Brockhaus, Mar 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170739 (G.f.: (1+x)/(1-19*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^19 - 18*t^18 - 18*t^17 - 18*t^16 - 18*t^15 - 18*t^14 - 18*t^13 - 18*t^12 - 18*t^11 - 18*t^10 - 18*t^9 - 18*t^8 - 18*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 15 2016 *)

Formula

G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^19 - 18*t^18 - 18*t^17 - 18*t^16 - 18*t^15 - 18*t^14 - 18*t^13 - 18*t^12 - 18*t^11 - 18*t^10 - 18*t^9 - 18*t^8 - 18*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1).

A170365 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.

Original entry on oeis.org

1, 20, 380, 7220, 137180, 2606420, 49521980, 940917620, 17877434780, 339671260820, 6453753955580, 122621325156020, 2329805177964380, 44266298381323220, 841059669245141180, 15980133715657682420
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[42]]+t^43+1,den=Total[-18 t^Range[42]]+ 171t^43+ 1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jan 14 2012 *)

Formula

G.f.: (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^43 - 18*t^42 - 18*t^41 - 18*t^40 - 18*t^39 - 18*t^38 - 18*t^37 - 18*t^36 - 18*t^35 - 18*t^34 - 18*t^33 - 18*t^32 - 18*t^31 - 18*t^30 - 18*t^29 - 18*t^28 - 18*t^27 - 18*t^26 - 18*t^25 - 18*t^24 - 18*t^23 - 18*t^22 - 18*t^21 - 18*t^20 - 18*t^19 - 18*t^18 - 18*t^17 - 18*t^16 - 18*t^15 - 18*t^14 - 18*t^13 - 18*t^12 - 18*t^11 - 18*t^10 - 18*t^9 - 18*t^8 - 18*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1)

A170701 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 20, 380, 7220, 137180, 2606420, 49521980, 940917620, 17877434780, 339671260820, 6453753955580, 122621325156020, 2329805177964380, 44266298381323220, 841059669245141180, 15980133715657682420
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 190. - Vincenzo Librandi, Dec 08 2012

Programs

  • Mathematica
    With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-18 t^Range[49]] + 171t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Vincenzo Librandi, Dec 08 2012 *)

Formula

G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(171*t^50 - 18*t^49 - 18*t^48 - 18*t^47 - 18*t^46 - 18*t^45 -
18*t^44 - 18*t^43 - 18*t^42 - 18*t^41 - 18*t^40 - 18*t^39 - 18*t^38 -
18*t^37 - 18*t^36 - 18*t^35 - 18*t^34 - 18*t^33 - 18*t^32 - 18*t^31 -
18*t^30 - 18*t^29 - 18*t^28 - 18*t^27 - 18*t^26 - 18*t^25 - 18*t^24 -
18*t^23 - 18*t^22 - 18*t^21 - 18*t^20 - 18*t^19 - 18*t^18 - 18*t^17 -
18*t^16 - 18*t^15 - 18*t^14 - 18*t^13 - 18*t^12 - 18*t^11 - 18*t^10 -
18*t^9 - 18*t^8 - 18*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 -
18*t + 1)

A162806 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 20, 380, 7030, 129960, 2400840, 44352270, 819332820, 15135787980, 279607936230, 5165281123560, 95419783331640, 1762718203098270, 32563220683609620, 601550117011031580, 11112615265773737430
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(171*t^3 - 18*t^2 - 18*t + 1)

A163124 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 20, 380, 7220, 136990, 2599200, 49316400, 935712000, 17753871510, 336855735180, 6391382632020, 121267853544780, 2300893742387430, 43656351283440360, 828320305398630840, 15716259104684097960
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^4 - 18*t^3 - 18*t^2 - 18*t + 1)

A163969 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 20, 380, 7220, 137180, 2606420, 49521790, 940910400, 17877229200, 339666055200, 6453630356400, 122618507616000, 2329742730783510, 44264942521047180, 841030689999256020, 15979521970107624780
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    coxG[{6,171,-18}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 21 2015 *)
    CoefficientList[Series[(t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 23 2017 *)
  • PARI
    t='t+O('t^50); Vec((t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1)) \\ G. C. Greubel, Aug 23 2017

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1).

A164633 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 20, 380, 7220, 137180, 2606420, 49521980, 940917430, 17877427560, 339671055240, 6453748749960, 122621201556840, 2329802360424360, 44266235934106440, 841058313382886670, 15980104736337918420
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1).

A164911 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 20, 380, 7220, 137180, 2606420, 49521980, 940917620, 17877434590, 339671253600, 6453753750000, 122621319950400, 2329805054365200, 44266295563783200, 841059606797924400, 15980132359795392000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^8 -
18*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1)

A165348 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 20, 380, 7220, 137180, 2606420, 49521980, 940917620, 17877434780, 339671260630, 6453753948360, 122621324950440, 2329805172758760, 44266298257724040, 841059666427601160, 15980133653210465640
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(171*t^9 - 18*t^8 - 18*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 -
18*t^2 - 18*t + 1)
Previous Showing 11-20 of 49 results. Next