cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A167698 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076001
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 20 2016 *)
    coxG[{15,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 18 2025 *)

Formula

G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).

A168704 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 1177436058284579599613601, A170746(17) = 1177436058284579599613952. - Klaus Brockhaus, Mar 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170746 (G.f.: (1+x)/(1-26*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^17 - 25*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 04 2016 *)
    coxG[{17,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 03 2020 *)

Formula

G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^17 - 25*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).

A168752 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
First disagreement at index 18: a(18) = 30613337515399069589962401, A170746(18) = 30613337515399069589962752. - Klaus Brockhaus, Mar 26 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170746 (G.f.: (1+x)/(1-26*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^18 - 25*t^17 - 25*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 10 2016 *)
    coxG[{18,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 30 2022 *)

Formula

G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^18 - 25*t^17 - 25*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).

A168800 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 795946775400375809339031201, A170746(19) = 795946775400375809339031552. - Klaus Brockhaus, Apr 01 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170746 (G.f.: (1+x)/(1-26*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^19 - 25*t^18 - 25*t^17 - 25*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 16 2016 *)
    coxG[{19,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 16 2022 *)

Formula

G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^19 - 25*t^18 - 25*t^17 - 25*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).

A170708 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 351. - Vincenzo Librandi, Dec 06 2012

Programs

  • Mathematica
    With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-25 t^Range[49]] + 325 t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Vincenzo Librandi, Dec 06 2012 *)
    coxG[{50,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 07 2019 *)

Formula

G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + ,2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + ,2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + ,2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + ,2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + ,2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + ,2*t + 1)/(325*t^50 - 25*t^49 - 25*t^48 - 25*t^47 - 25*t^46 - 25*t^45 - ,25*t^44 - 25*t^43 - 25*t^42 - 25*t^41 - 25*t^40 - 25*t^39 - 25*t^38 - ,25*t^37 - 25*t^36 - 25*t^35 - 25*t^34 - 25*t^33 - 25*t^32 - 25*t^31 - ,25*t^30 - 25*t^29 - 25*t^28 - 25*t^27 - 25*t^26 - 25*t^25 - 25*t^24 - ,25*t^23 - 25*t^22 - 25*t^21 - 25*t^20 - 25*t^19 - 25*t^18 - 25*t^17 - ,25*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - ,25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - ,25*t + 1).

A162827 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 27, 702, 17901, 456300, 11626875, 296261550, 7548913125, 192350632500, 4901203636875, 124885459968750, 3182152634578125, 81083061181687500, 2066042570916796875, 52643941196224218750, 1341397599294476953125
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(325*t^3 - 25*t^2 - 25*t + 1)

A163179 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474201, 12320100, 320085675, 8316067500, 216057716550, 5613342710625, 145838884522500, 3789004401804375, 98441196968058750, 2557576669978687500, 66447774146243953125, 1726363373899181062500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • PARI
    Vec((t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^4 - 25*t^3 - 25*t^2 - 25*t + 1) + O(t^20)) \\ Jinyuan Wang, Mar 23 2020

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).

A164644 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725601, 216858856500, 5638330032075, 146596574673900, 3811510781360100, 99099276151168800, 2576581071661350000, 66991105048200214050, 1741768658063341610625
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).

A164969 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874401, 5638330725300, 146596598620875, 3811511557982700, 99099300347388900, 2576581804867917600, 66991126818296818800, 1741769294460722280000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^8 -
25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1)

A168848 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
First disagreement at index 20: a(20) = 20694616160409771042814820001, A170746(20) = 20694616160409771042814820352. - Klaus Brockhaus, Apr 02 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170746 (G.f.: (1+x)/(1-26*x)).

Programs

Formula

G.f.: (t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^20 - 25*t^19 - 25*t^18 - 25*t^17 - 25*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).
Previous Showing 11-20 of 49 results. Next