cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A167756 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

Original entry on oeis.org

1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339100000000, 610173000000000, 18305190000000000, 549155700000000000, 16474671000000000000, 494240130000000000000, 14827203899999999999535
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 23 2016 *)
    coxG[{15,435,-29}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 20 2016 *)

Formula

G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).

A167946 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339100000000, 610173000000000, 18305190000000000, 549155700000000000, 16474671000000000000, 494240130000000000000, 14827203900000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-30*x+464*x^16-435*x^17) )); // G. C. Greubel, Sep 07 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-30*t+464*t^16-435*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016; Sep 07 2023 *)
    coxG[{16, 435, -29, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 07 2023 *)
  • SageMath
    def A167946_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-30*x+464*x^16-435*x^17) ).list()
    A167946_list(40) # G. C. Greubel, Sep 07 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 435*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
From G. C. Greubel, Sep 07 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 30*t + 464*t^16 - 435*t^17).
a(n) = 37*Sum_{j=1..15} a(n-j) - 703*a(n-16). (End)

A168708 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

Original entry on oeis.org

1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339100000000, 610173000000000, 18305190000000000, 549155700000000000, 16474671000000000000, 494240130000000000000, 14827203900000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 13344483509999999999999535, A170750(17) = 13344483510000000000000000. - Klaus Brockhaus, Mar 28 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170750 (G.f.: (1+x)/(1-30*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^17 - 29*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 05 2016 *)
    coxG[{17,435,-29}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 15 2023 *)

Formula

G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^17 - 29*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).

A168756 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

Original entry on oeis.org

1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339100000000, 610173000000000, 18305190000000000, 549155700000000000, 16474671000000000000, 494240130000000000000, 14827203900000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
First disagreement at index 18: a(18) = 400334505299999999999999535, A170750(18) = 400334505300000000000000000. - Klaus Brockhaus, Mar 26 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170750 (G.f.: (1+x)/(1-30*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^18 - 29*t^17 - 29*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 11 2016 *)
    coxG[{18,435,-29}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 31 2017 *)

Formula

G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^18 - 29*t^17 - 29*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).

A168804 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.

Original entry on oeis.org

1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339100000000, 610173000000000, 18305190000000000, 549155700000000000, 16474671000000000000, 494240130000000000000, 14827203900000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 12010035158999999999999999535, A170750(19) = 12010035159000000000000000000. - Klaus Brockhaus, Apr 01 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170750 (G.f.: (1+x)/(1-30*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^19 - 29*t^18 - 29*t^17 - 29*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 16 2016 *)

Formula

G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^19 - 29*t^18 - 29*t^17 - 29*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).

A170136 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.

Original entry on oeis.org

1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339100000000, 610173000000000, 18305190000000000, 549155700000000000, 16474671000000000000, 494240130000000000000, 14827203900000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[37]]+t^38+1,den=Total[-29 t^Range[37]]+ 435t^38+1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, May 16 2012 *)

Formula

G.f. (t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^38 - 29*t^37 -
29*t^36 - 29*t^35 - 29*t^34 - 29*t^33 - 29*t^32 - 29*t^31 - 29*t^30 -
29*t^29 - 29*t^28 - 29*t^27 - 29*t^26 - 29*t^25 - 29*t^24 - 29*t^23 -
29*t^22 - 29*t^21 - 29*t^20 - 29*t^19 - 29*t^18 - 29*t^17 - 29*t^16 -
29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 -
29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1)

A170712 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339100000000, 610173000000000, 18305190000000000, 549155700000000000, 16474671000000000000, 494240130000000000000, 14827203900000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 465. - Vincenzo Librandi, Dec 06 2012

Programs

  • Mathematica
    With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-29 t^Range[49]] + 435 t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Vincenzo Librandi, Dec 06 2012 *)
    coxG[{50,435,-29}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 29 2020 *)

Formula

G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(435*t^50 - 29*t^49 - 29*t^48 - 29*t^47 - 29*t^46 - 29*t^45 -
29*t^44 - 29*t^43 - 29*t^42 - 29*t^41 - 29*t^40 - 29*t^39 - 29*t^38 -
29*t^37 - 29*t^36 - 29*t^35 - 29*t^34 - 29*t^33 - 29*t^32 - 29*t^31 -
29*t^30 - 29*t^29 - 29*t^28 - 29*t^27 - 29*t^26 - 29*t^25 - 29*t^24 -
29*t^23 - 29*t^22 - 29*t^21 - 29*t^20 - 29*t^19 - 29*t^18 - 29*t^17 -
29*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 -
29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 -
29*t + 1).

A162835 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 31, 930, 27435, 809100, 23854965, 703323660, 20736221625, 611369903490, 18025131836235, 531438294045150, 15668493442542015, 461957088012265560, 13619966204279779425, 401559980828963528040, 11839267130678720397885
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(435*t^3 - 29*t^2 - 29*t + 1)

A164992 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677969999535, 20339099972100, 610172998744965, 18305189949807900, 549155698118005500, 16474670932253220000, 494240127628988250000, 14827203818711397000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^8 -
29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1)

A165547 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339099999535, 610172999972100, 18305189998744965, 549155699949807900, 16474670998118005500, 494240129932253220000, 14827203897628988250000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(435*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 -
29*t^2 - 29*t + 1)
Previous Showing 11-20 of 49 results. Next