cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A168712 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

Original entry on oeis.org

1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068154560, 1838317255040, 62502786671360, 2125094746826240, 72253221392092160, 2456609527331133440, 83524723929258536960, 2839840613594790256640, 96554580862222868725760
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 111617095476729636246977965, A170754(17) = 111617095476729636246978560. - Klaus Brockhaus, Mar 28 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170754 (G.f.: (1+x)/(1-34*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^17 - 33*t^16 - 33*t^15 - 33*t^14 - 33*t^13 - 33*t^12 - 33*t^11 - 33*t^10 - 33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 05 2016 *)
    coxG[{17,561,-33}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 03 2025 *)

Formula

G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^17 - 33*t^16 - 33*t^15 - 33*t^14 - 33*t^13 - 33*t^12 - 33*t^11 - 33*t^10 - 33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).

A168760 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

Original entry on oeis.org

1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068154560, 1838317255040, 62502786671360, 2125094746826240, 72253221392092160, 2456609527331133440, 83524723929258536960, 2839840613594790256640, 96554580862222868725760
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
First disagreement at index 18: a(18) = 3794981246208807632397270445, A170754(18) = 3794981246208807632397271040. - Klaus Brockhaus, Mar 26 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170754 (G.f.: (1+x)/(1-34*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^18 - 33*t^17 - 33*t^16 - 33*t^15 - 33*t^14 - 33*t^13 - 33*t^12 - 33*t^11 - 33*t^10 - 33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 11 2016 *)

Formula

G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^18 - 33*t^17 - 33*t^16 - 33*t^15 - 33*t^14 - 33*t^13 - 33*t^12 - 33*t^11 - 33*t^10 - 33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).

A168808 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.

Original entry on oeis.org

1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068154560, 1838317255040, 62502786671360, 2125094746826240, 72253221392092160, 2456609527331133440, 83524723929258536960, 2839840613594790256640, 96554580862222868725760
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 129029362371099459501507214765, A170754(19) = 129029362371099459501507215360. - Klaus Brockhaus, Apr 01 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170754 (G.f.: (1+x)/(1-34*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[18]]+t^19+1,den=Total[-33 t^Range[18]]+ 561t^19+ 1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Mar 11 2012 *)

Formula

G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^19 - 33*t^18 - 33*t^17 - 33*t^16 - 33*t^15 - 33*t^14 - 33*t^13 - 33*t^12 - 33*t^11 - 33*t^10 - 33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).

A170716 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068154560, 1838317255040, 62502786671360, 2125094746826240, 72253221392092160, 2456609527331133440, 83524723929258536960, 2839840613594790256640, 96554580862222868725760
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 595. - Vincenzo Librandi, Dec 06 2012

Programs

  • Mathematica
    With[{num=Total[2t^Range[49]]+t^50+1,den=Total[-33 t^Range[49]]+ 561t^50+ 1},CoefficientList[Series[num/den,{t,0,40}],t]] (* Harvey P. Dale, Sep 10 2012 *)

Formula

G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(561*t^50 - 33*t^49 - 33*t^48 - 33*t^47 - 33*t^46 - 33*t^45 -
33*t^44 - 33*t^43 - 33*t^42 - 33*t^41 - 33*t^40 - 33*t^39 - 33*t^38 -
33*t^37 - 33*t^36 - 33*t^35 - 33*t^34 - 33*t^33 - 33*t^32 - 33*t^31 -
33*t^30 - 33*t^29 - 33*t^28 - 33*t^27 - 33*t^26 - 33*t^25 - 33*t^24 -
33*t^23 - 33*t^22 - 33*t^21 - 33*t^20 - 33*t^19 - 33*t^18 - 33*t^17 -
33*t^16 - 33*t^15 - 33*t^14 - 33*t^13 - 33*t^12 - 33*t^11 - 33*t^10 -
33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 -
33*t + 1).

A162847 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 35, 1190, 39865, 1335180, 44708895, 1497090210, 50130334485, 1678623324840, 56209003149915, 1882168556020830, 63024751767399345, 2110395119905763460, 70666959205286686935, 2366295806989839830490, 79235839622172041773965
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(561*t^3 - 33*t^2 - 33*t + 1).
a(n) = 33*a(n-1) + 33*a(n-2) - 561*a(n-3). - Wesley Ivan Hurt, Apr 20 2021

A164068 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 35, 1190, 40460, 1375640, 46771760, 1590239245, 54068114100, 1838315192175, 62502693168300, 2125090773290100, 72253059281172000, 2456603097196693830, 83524474080352031265, 2839831057104956921160, 96554219846263616159415
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1), {t,0,50}], t] (* G. C. Greubel, Sep 09 2017 *)
    coxG[{6,561,-33}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 27 2018 *)
  • PARI
    t='t+O('t^50); Vec((t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1)) \\ G. C. Greubel, Sep 09 2017

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).

A164671 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068153965, 1838317214580, 62502784608495, 2125094653323180, 72253217418556020, 2456609365220213280, 83524717499123743920, 2839840363745848388310, 96554571305730654116385
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).

A165167 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068154560, 1838317254445, 62502786630900, 2125094744763375, 72253221298589100, 2456609523357597300, 83524723767147616800, 2839840607164655463600, 96554580612373926504000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^8 -
33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1)

A165650 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068154560, 1838317255040, 62502786670765, 2125094746785780, 72253221390029295, 2456609527237630380, 83524723925285000820, 2839840613432679336480, 96554580855792733932720
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(561*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 -
33*t^2 - 33*t + 1)

A168856 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.

Original entry on oeis.org

1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068154560, 1838317255040, 62502786671360, 2125094746826240, 72253221392092160, 2456609527331133440, 83524723929258536960, 2839840613594790256640, 96554580862222868725760
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
First disagreement at index 20: a(20) = 4386998320617381623051245321645, A170754(20) = 4386998320617381623051245322240. - Klaus Brockhaus, Apr 04 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170754 (G.f.: (1+x)/(1-34*x)).

Formula

G.f.: (t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^20 - 33*t^19 - 33*t^18 - 33*t^17 - 33*t^16 - 33*t^15 - 33*t^14 - 33*t^13 - 33*t^12 - 33*t^11 - 33*t^10 - 33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).
Previous Showing 11-20 of 49 results. Next