cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A167818 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences start to be different at a(15).
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Maple
    (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1);
    taylor(%,t=0,64) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Apr 12 2019
  • Mathematica
    coxG[{15,630,-35}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 19 2014 *)
    CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 27 2016 *)

Formula

G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1).

Extensions

Programs and 500-term b-file confirmed by Robert Israel and Vaclav Kotesovec, Apr 11 2019

A167953 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-36*x+665*x^16-630*x^17) )); // G. C. Greubel, Sep 06 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-36*t+665*t^16-630*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016; Sep 06 2023 *)
    coxG[{16,630,-35}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 14 2022 *)
  • SageMath
    def A167955_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-36*x+665*x^16-630*x^17) ).list()
    A167955_list(40) # G. C. Greubel, Sep 06 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 630*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1).
From G. C. Greubel, Sep 06 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 36*t + 665*t^16 - 630*t^17).
a(n) = 35*Sum_{j=1..15} a(n-j) - 630*a(n-16). (End)

A168714 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 294470461068016832722500966, A170756(17) = 294470461068016832722501632. - Klaus Brockhaus, Mar 28 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170756 (G.f.: (1+x)/(1-36*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 05 2016 *)

Formula

G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1).

A168762 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
First disagreement at index 18: a(18) = 10600936598448605978010058086, A170756(18) = 10600936598448605978010058752. - Klaus Brockhaus, Mar 26 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170756 (G.f.: (1+x)/(1-36*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 11 2016 *)

Formula

G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1).

A168810 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 381633717544149815208362114406, A170756(19) = 381633717544149815208362115072. - Klaus Brockhaus, Apr 01 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170756 (G.f.: (1+x)/(1-36*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^19 - 35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 17 2016 *)

Formula

G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^19 - 35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1).

A170142 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f: (t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^38 - 35*t^37 - 35*t^36 - 35*t^35 - 35*t^34 - 35*t^33 - 35*t^32 - 35*t^31 - 35*t^30 - 35*t^29 - 35*t^28 - 35*t^27 - 35*t^26 - 35*t^25 - 35*t^24 - 35*t^23 - 35*t^22 - 35*t^21 - 35*t^20 - 35*t^19 - 35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1).

A170718 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 666. - Vincenzo Librandi, Dec 06 2012

Programs

  • Mathematica
    With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-35  t^Range[49]] + 630 t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 201}], t]] (* Vincenzo Librandi, Dec 06 2012 *)
    coxG[{42,630,-35}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 06 2019 *)

Formula

G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(630*t^50 - 35*t^49 - 35*t^48 - 35*t^47 - 35*t^46 - 35*t^45 -
35*t^44 - 35*t^43 - 35*t^42 - 35*t^41 - 35*t^40 - 35*t^39 - 35*t^38 -
35*t^37 - 35*t^36 - 35*t^35 - 35*t^34 - 35*t^33 - 35*t^32 - 35*t^31 -
35*t^30 - 35*t^29 - 35*t^28 - 35*t^27 - 35*t^26 - 35*t^25 - 35*t^24 -
35*t^23 - 35*t^22 - 35*t^21 - 35*t^20 - 35*t^19 - 35*t^18 - 35*t^17 -
35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 -
35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 -
35*t + 1)

A164673 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540945766, 2899474023600, 104381063987130, 3757718272487760, 135277856691798240, 4870002800665336320, 175320099375333696000, 6311523525361750684170
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1).

A165169 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474070886, 104381066527920, 3757718394142650, 135277862158086480, 4870003036573352160, 175320109276401277440, 6311523932501827576320
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^8 -
35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1)

A165654 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575206, 3757718396683440, 135277862279741370, 4870003042039640400, 175320109512309293280, 6311523942402895157760
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[8]]+t^9+1,den=Total[-35 t^Range[8]]+ 630t^9+1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Nov 01 2011 *)

Formula

G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(630*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 -
35*t^2 - 35*t + 1)
Previous Showing 11-20 of 49 results. Next