cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A167643 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.

Original entry on oeis.org

1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496092715
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (990*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 17 2016 *)
    coxG[{14,990,-44}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 04 2020 *)

Formula

G.f.: (t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).

A167861 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

Original entry on oeis.org

1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    coxG[{15,990,-44}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 07 2015 *)
    CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 28 2016 *)

Formula

G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).

A168723 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

Original entry on oeis.org

1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 13006428327512311706542967715, A170765(17) = 13006428327512311706542968750. - Klaus Brockhaus, Mar 28 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170765 (G.f.: (1+x)/(1-45*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^17 - 44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 06 2016 *)

Formula

G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^17 - 44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).

A168771 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

Original entry on oeis.org

1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
First disagreement at index 18: a(18) = 585289274738054026794433592715, A170765(18) = 585289274738054026794433593750. - Klaus Brockhaus, Mar 26 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170765 (G.f.: (1+x)/(1-45*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^18 - 44*t^17 - 44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 12 2016 *)
    coxG[{18,990,-44}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 20 2025 *)

Formula

G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^18 - 44*t^17 - 44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).

A168819 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.

Original entry on oeis.org

1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 26338017363212431205749511717715, A170765(19) = 26338017363212431205749511718750. - Klaus Brockhaus, Apr 01 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170765 (G.f.: (1+x)/(1-45*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^19 - 44*t^18 - 44*t^17 - 44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1), {t,0,50}], t] (* G. C. Greubel, Nov 21 2016 *)
    coxG[{19,990,-44}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 11 2024 *)

Formula

G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^19 - 44*t^18 - 44*t^17 - 44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).

A170727 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 1035. - Vincenzo Librandi, Dec 08 2012

Programs

  • Mathematica
    With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-44 t^Range[49]] + 990t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Vincenzo Librandi, Dec 08 2012 *)
    coxG[{50,990,-44}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 14 2022 *)

Formula

G.f.: (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(990*t^50 - 44*t^49 - 44*t^48 - 44*t^47 - 44*t^46 - 44*t^45 -
44*t^44 - 44*t^43 - 44*t^42 - 44*t^41 - 44*t^40 - 44*t^39 - 44*t^38 -
44*t^37 - 44*t^36 - 44*t^35 - 44*t^34 - 44*t^33 - 44*t^32 - 44*t^31 -
44*t^30 - 44*t^29 - 44*t^28 - 44*t^27 - 44*t^26 - 44*t^25 - 44*t^24 -
44*t^23 - 44*t^22 - 44*t^21 - 44*t^20 - 44*t^19 - 44*t^18 - 44*t^17 -
44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 -
44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 -
44*t + 1).
From Zak Seidov, Dec 04 2009: (Start)
G.f.: (t^50+2f+1)/(990*t^50-44f+1) with f=t*(1+t+t^2+t^3+t^4+t^5+t^6)*(1+t^7+t^14+t^21+t^28+t^35+t^42).
G.f.: (1 + t - t^50 - t^51)/(1 - 45*t + 1034*t^50 - 990*t^51).
(End)

A164691 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973217715, 17188794750600, 773495761682160, 34807309181429400, 1566328908922272000, 70484800710609945000, 3171816023387294250000, 142731720665871344945190
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).

A165178 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794842715, 773495767875600, 34807309552307160, 1566328929759554400, 70484801834937897000, 3171816082381313070000, 142731723698568934875000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^8 -
44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1)

A165702 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767967715, 34807309558500600, 1566328930130432160, 70484801855775179400, 3171816083505641022000, 142731723757562953695000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(990*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 -
44*t^2 - 44*t + 1)

A168867 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.

Original entry on oeis.org

1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170765, although the two sequences are eventually different.
First disagreement at index 20: a(20) = 1185210781344559404258728027342715, A170765(20) = 1185210781344559404258728027343750. - Klaus Brockhaus, Apr 04 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170765 (G.f.: (1+x)/(1-45*x)).

Programs

Formula

G.f.: (t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^20 - 44*t^19 - 44*t^18 - 44*t^17 - 44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).
Previous Showing 11-20 of 49 results. Next