cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A181405 Total number of n-digit numbers requiring 8 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

0, 3, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

Arthur Wieferich proved that only 15 integers require eight cubes, cf. A018889.
A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + a(n) + A171386(n) = A052268(n)

Crossrefs

Formula

a(n) = A181404(n) - A181404(n-1).

A162626 If 0 <= n <= 3 then a(n) = n(n+1)(n+2)/3, if n >= 4 then a(n) = n(n^2+5)/3.

Original entry on oeis.org

0, 2, 8, 20, 28, 50, 82, 126, 184, 258, 350, 462, 596, 754, 938, 1150, 1392, 1666, 1974, 2318, 2700, 3122, 3586, 4094, 4648, 5250, 5902, 6606, 7364, 8178, 9050, 9982, 10976, 12034, 13158, 14350, 15612, 16946, 18354, 19838, 21400, 23042, 24766, 26574
Offset: 0

Views

Author

Omar E. Pol, Jul 07 2009, Jul 13 2009

Keywords

Comments

One way to generalize the magic number sequence in A018226.
See also A130598 and A162630.

Crossrefs

Formula

From Daniel Forgues, May 03 2011: (Start)
If 0 <= n <= 3 then a(n) = 2 T_n, otherwise a(n) = 2 (T_n - t_{n-1}), where T_n is the n-th tetrahedral number, t_n the n-th triangular number.
G.f.: (2*x*(1 - 6*x^3 + 14*x^4 - 11*x^5 + 3*x^6))/(1 - x)^4, n >= 0.
(End)
a(n) = n*(n^2+5)/3 + (4*n-6)*A171386(n). - Omar E. Pol, Aug 14 2013

Extensions

Edited by N. J. A. Sloane, Jul 18 2009

A294619 a(0) = 0, a(1) = 1, a(2) = 2 and a(n) = 1 for n > 2.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of (sqrt(5) + 1)/(2*sqrt(5)).
Inverse binomial transform is {0, 1, 4, 10, 21, 41, 78, 148, ...}, A132925 with one leading zero.
Also the main diagonal in the expansion of (1 + x)^n - 1 + x^2 (A300453).
The partial sum of this sequence is A184985.
a(n) is the number of state diagrams having n components that are obtained from an n-foil [(2,n)-torus knot] shadow. Let a shadow diagram be the regular projection of a mathematical knot into the plane, where the under/over information at every crossing is omitted. A state for the shadow diagram is a diagram obtained by merging either of the opposite areas surrounding each crossing.
a(n) satisfies the identities a(n)^a(n+k) = a(n), 2^a(k) = 2*a(k) and a(k)! = a(k), k > 0.
Also the number of non-isomorphic simple connected undirected graphs with n+1 edges and a longest path of length 2. - Nathaniel Gregg, Nov 02 2021

Examples

			For n = 2, the shadow of the Hopf link yields 2 two-component state diagrams (see example in A300453). Thus a(2) = 2.
		

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.
  • L. H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.
  • V. Manturov, Knot Theory, CRC Press, 2004.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x + x^2 - x^3)/(1 - x), {x, 0, 100}], x] (* Wesley Ivan Hurt, Nov 05 2017 *)
    f[n_] := If[n > 2, 1, n]; Array[f, 105, 0] (* Robert G. Wilson v, Dec 27 2017 *)
    PadRight[{0,1,2},120,{1}] (* Harvey P. Dale, Feb 20 2023 *)
  • Maxima
    makelist((1 + (-1)^((n + 1)!))/2 + kron_delta(n, 2), n, 0, 100);
  • PARI
    a(n) = if(n>2, 1, n);
    

Formula

a(n) = ((-1)^2^(n^2 + 3*n + 2) + (-1)^2^(n^2 - n) - (-1)^2^(n^2 - 3*n + 2) + 1)/2.
a(n) = (1 + (-1)^((n + 1)!))/2 + Kronecker(n, 2).
a(n) = min(n, 3) - 2*(max(n - 2, 0) - max(n - 3, 0)).
a(n) = floor(F(n+1)/F(n)) for n > 0, with a(0) = 0, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) = a(n-1) for n > 3, with a(0) = 0, a(1) = 1, a(2) = 2 and a(3) = 1.
A005803(a(n)) = A005096(a(n)) = A000007(n).
A107583(a(n)) = A103775(n+5).
a(n+1) = 2^A185012(n+1), with a(0) = 0.
a(n) = A163985(n) mod A004278(n+1).
a(n) = A157928(n) + A171386(n+1).
a(n) = A063524(n) + A157928(n) + A185012(n).
a(n) = A010701(n) - A141044(n) - A179184(n).
G.f.: (x + x^2 - x^3)/(1 - x).
E.g.f.: (2*exp(x) - 2 + x^2)/2.

A171387 The characteristic function of primes > 3: 1 if n is prime such that neither prime+-1 is prime else 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 07 2009

Keywords

Crossrefs

Formula

A010051(n) = a(n) + A171386(n).
If n > 3, a(n) = A010051(n), otherwise a(n) = 0. - Antti Karttunen, Oct 04 2017

A142704 A generalized factorial level recursion of a Padovan type: a(n) = b(n)*(a(n-2) + a(n-3)) with b(n) = b(n-1) + k and k=2.

Original entry on oeis.org

0, 1, 1, 6, 16, 70, 264, 1204, 5344, 26424, 130960, 698896, 3777216, 21576256, 125331136, 760604160, 4701036544, 30121800064, 196619065344, 1323267791104, 9069634616320, 63835247970816, 457287705926656
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 24 2008

Keywords

Crossrefs

Cf. A171386 (k=0), A108189 (k=1), A002467 (Game of Mousetrap), A000931 (Padovan).

Programs

  • Maple
    A142704 := proc(n) option remember: if n=0 then 0 elif n=1 then 1 elif n =2 then 1 elif n>=3 then 2*n*(procname(n-2) + procname(n-3)) fi: end: seq(A142704(n), n=0..22); # Johannes W. Meijer, Jul 27 2011
  • Mathematica
    Clear[a, b, n, k]; k = 2; b[0] = 0; b[n_] := b[n] = b[n - 1] + k; a[0] = 0; a[1] = 1; a[2] = 2; a[n_] := a[n] = b[n]*(a[n - 2] + a[n - 3]); Table[a[n], {n, 0, 22}]
    FullSimplify[CoefficientList[Series[Pi/(4*Sqrt[2])*E^(x^2/2)*x *Sqrt[1+x] *(BesselI[-1/4,1/2*(1+x)^2]*(2*BesselI[-3/4,1/2] - BesselI[1/4,1/2]) + BesselI[1/4,1/2*(1+x)^2]*(BesselI[-1/4,1/2] - 2*BesselI[3/4,1/2])), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 28 2012 *)

Formula

a(n) = b(n)*(a(n-2) + a(n-3)) with b(n) = b(n-1) + k and k = 2.
a(n) = 2*n*(a(n-2) + a(n-3)) with a(0) = 0, a(1) = a(2) = 1. - Johannes W. Meijer, Jul 27 2011
From Vaclav Kotesovec, Dec 28 2012: (Start)
E.g.f.: (Pi/(4*sqrt(2)))*exp(x^2/2)*x*sqrt(1+x)*(BesselI(-1/4,1/2*(1+x)^2)*(2*BesselI(-3/4,1/2)-BesselI(1/4,1/2))+BesselI(1/4,1/2*(1+x)^2)*(BesselI(-1/4,1/2)-2*BesselI(3/4,1/2))).
a(n) ~ (sqrt(Pi)/8) * (2*BesselI(-3/4,1/2) - 2*BesselI(3/4,1/2) + BesselI(-1/4,1/2) - BesselI(1/4,1/2)) * 2^(n/2-1/4)*exp(sqrt(n)/sqrt(2)-n/2+3/8)*n^(n/2+1/4) * (1-47/(48*sqrt(2*n))). (End)

Extensions

Edited and information added by Johannes W. Meijer, Jul 27 2011
Previous Showing 11-15 of 15 results.