cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A171479 a(n) = 6*a(n-1)-8*a(n-2)+3 for n > 1; a(0) = 1, a(1) = 8.

Original entry on oeis.org

1, 8, 43, 197, 841, 3473, 14113, 56897, 228481, 915713, 3666433, 14672897, 58705921, 234852353, 939466753, 3757981697, 15032156161, 60129083393, 240517251073, 962070839297, 3848287027201, 15393155448833, 61572636475393
Offset: 0

Views

Author

Klaus Brockhaus, Dec 09 2009

Keywords

Crossrefs

Programs

  • Magma
    [(2-7*2^n+7*4^n)/2: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
  • Maple
    A171479:=n->(2-7*2^n+7*4^n)/2: seq(A171479(n), n=0..30); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    LinearRecurrence[{7,-14,8},{1,8,43},30] (* Harvey P. Dale, Sep 18 2022 *)
  • PARI
    {m=23; v=concat([1, 8], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]+3); v}
    

Formula

a(n) = (2-7*2^n+7*4^n)/2.
G.f.: (1+x+x^2)/((1-x)*(1-2*x)*(1-4*x)).
E.g.f.: exp(x)*(2 - 7*exp(x) + 7*exp(3*x))/2. - Stefano Spezia, Feb 23 2025

A171480 a(n) = 6*a(n-1) - 8*a(n-2) + 4 for n > 1; a(0) = 1, a(1) = 9.

Original entry on oeis.org

1, 9, 50, 232, 996, 4124, 16780, 67692, 271916, 1089964, 4364460, 17467052, 69886636, 279583404, 1118407340, 4473776812, 17895402156, 71582198444, 286329973420, 1145322252972, 4581293730476, 18325184359084, 73300756310700
Offset: 0

Views

Author

Klaus Brockhaus, Dec 09 2009

Keywords

Comments

Inverse binomial transform of A016273.

Crossrefs

Cf. A016273 (expansion of 1/((1-2*x)*(1-3*x)*(1-5*x))), A171472, A171473.

Programs

  • Magma
    [(25*4^n-27*2^n+8)/6: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
  • PARI
    {m=23; v=concat([1, 9], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]+4); v}
    

Formula

a(n) = (25*4^n - 27*2^n + 8)/6.
G.f.: (1+x)^2/((1-x)*(1-2*x)*(1-4*x)).
E.g.f.: exp(x)*(8 - 27*exp(x) + 25*exp(3*x))/6. - Stefano Spezia, Sep 27 2023
Previous Showing 11-12 of 12 results.