cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 94 results. Next

A387158 Numbers k such that A173557(k) = A173557(sigma(k)), where A173557(n) is multiplicative with a(p^e) = p-1 and sigma is the sum of divisors function.

Original entry on oeis.org

1, 6, 26, 28, 63, 74, 120, 122, 135, 146, 270, 314, 351, 386, 416, 496, 520, 554, 626, 672, 794, 842, 875, 891, 914, 999, 1080, 1082, 1226, 1232, 1322, 1346, 1404, 1466, 1480, 1514, 1638, 1647, 1750, 1754, 1782, 1859, 1971, 1994, 2186, 2306, 2402, 2426, 2440, 2474, 2642, 2762, 2906, 2920, 3242, 3314, 3506, 3718
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2025

Keywords

Comments

Numbers k for which A173557(k) == A387157(k).

Crossrefs

Subsequences: A000396, A387159 (odd terms).
Cf. also A006872, A351446, A386424.

Programs

  • Mathematica
    A387158Q[k_] := #[k] == #[DivisorSigma[1, k]] & [Times @@ (FactorInteger[#][[All, 1]] - 1) &];
    Select[Range[10000], A387158Q] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    A173557(n) = factorback(apply(p -> p-1,factor(n)[,1]));
    is_A387158(n) = (A173557(sigma(n))==A173557(n));

A296087 Numbers n such that there is k < n for which A003557(k) = A003557(n), A048250(k) = A048250(n) and A173557(k) = A173557(n).

Original entry on oeis.org

15265, 27962, 30217, 30530, 45795, 50541, 54379, 54905, 57598, 60434, 61060, 64255, 66526, 72357, 72713, 89585, 90651, 91590, 101082, 101949, 108758, 109810, 120868, 122120, 128510, 136555, 137385, 137883, 138761, 144714, 145426, 149739, 151085, 152633, 161386, 163137, 164715, 166315, 179170, 181302, 181543, 182942
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2017

Keywords

Comments

Because Euler phi(n) = A000010(n) = A003557(n) * A173557(n), Dedekind psi(n) = A001615(n) = A003557(n) * A048250(n), and because also sigma(n) (A000203) can be computed from those three elements (see A291750), these numbers form also a subset of the positions of such duplicated occurrences of values computed for those functions. See for example A069822 and A296214.
a(11) = 61060 is the first term that is not squarefree.

Examples

			15265 is a term because A003557(15265) = 1 = A003557(15169), A048250(15265) = 19008 = A048250(15169), A173557(15265) = 11760 = A173557(15169).
27962 is a term because A003557(27962) = 1 = A003557(26355), A048250(27962) = 48384 = A048250(26355), A173557(27962) = 12000 = A173557(26355).
		

Crossrefs

Subsequence of A069822 and of A296214.

Programs

  • PARI
    search_up_to = (2^23);
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ This function from Michel Marcus, Oct 31 2017
    Anotsubmitted1(n) = (1/2)*(2 + ((A003557(n)+A173557(n))^2) - A003557(n) - 3*A173557(n));
    Akaikki3(n) = (1/2)*(2 + ((A048250(n)+Anotsubmitted1(n))^2) - A048250(n) - 3*Anotsubmitted1(n));
    om = Map(); m = 0; i=0; for(n = 1, search_up_to, k = Akaikki3(n); if(!mapisdefined(om,k), mapput(om,k,n), i++; write("b296087.txt", i, " ", n)));

A318304 a(n) = A083254(n)/A003557(n) = (2*A173557(n) - A007947(n)).

Original entry on oeis.org

1, 0, 1, 0, 3, -2, 5, 0, 1, -2, 9, -2, 11, -2, 1, 0, 15, -2, 17, -2, 3, -2, 21, -2, 3, -2, 1, -2, 27, -14, 29, 0, 7, -2, 13, -2, 35, -2, 9, -2, 39, -18, 41, -2, 1, -2, 45, -2, 5, -2, 13, -2, 51, -2, 25, -2, 15, -2, 57, -14, 59, -2, 3, 0, 31, -26, 65, -2, 19, -22, 69, -2, 71, -2, 1, -2, 43, -30, 77, -2, 1, -2, 81, -18, 43, -2, 25
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A083254(n)/A003557(n) = 2*A173557(n) - A007947(n).
a(n) = A173557(n) - A318305(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 2 * A307868 - A065463 = 0.238919... . - Amiram Eldar, Dec 07 2023

A318317 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A173557.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 3, 5, 1, 1, 5, 3, 6, 3, 2, 35, 8, 1, 9, 3, 3, 5, 11, 5, 0, 3, 1, 9, 14, 1, 15, 63, 5, 4, 6, 3, 18, 9, 6, 5, 20, 3, 21, 15, 1, 11, 23, 35, -3, 0, 8, 9, 26, 1, 10, 15, 9, 7, 29, 3, 30, 15, 3, 231, 12, 5, 33, 3, 11, 3, 35, 5, 36, 9, 0, 27, 15, 3, 39, 35, 3, 10, 41, 9, 16, 21, 14, 25, 44, 1, 18, 33, 15, 23, 18, 63, 48, -3, 5, 0, 50, 4, 51, 15, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Crossrefs

Cf. A173557, A318318 (denominators).
Cf. also A317925, A317935.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
  • PARI
    up_to = 16384;
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318317_18 = DirSqrt(vector(up_to, n, A173557(n)));
    A318317(n) = numerator(v318317_18[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025: (Start)
Let f(s) = Product_{p prime} (1 - 2/(p + p^s)).
Sum_{k=1..n} A318317(k) / A318318(k) ~ n^2 * sqrt(f(2)/(4*Pi*log(n))) * (1 + (1 - gamma - f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
f(2) = A307868 = Product_{p prime} (1 - 2/(p*(p+1))) = 0.471680613612997868...
f'(2)/f(2) = Sum_{p prime} 2*p*log(p) / ((p+1)*(p^2+p-2)) = 0.7254208328519472161058521308839896283514823... and gamma is the Euler-Mascheroni constant A001620. (End)

A319341 a(n) = A000010(n) - A173557(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 0, 7, 0, 4, 0, 4, 0, 0, 0, 6, 16, 0, 16, 6, 0, 0, 0, 15, 0, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 10, 16, 0, 0, 14, 36, 16, 0, 12, 0, 16, 0, 18, 0, 0, 0, 8, 0, 0, 24, 31, 0, 0, 0, 16, 0, 0, 0, 22, 0, 0, 32, 18, 0, 0, 0, 28, 52, 0, 0, 12, 0, 0, 0, 30, 0, 16, 0, 22, 0, 0, 0, 30, 0, 36, 40, 36, 0, 0, 0, 36, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 17 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[n] - Times @@ (FactorInteger[n][[;;, 1]] - 1); a[1] = 0; Array[a, 100] (* Amiram Eldar, Dec 21 2023 *)
  • PARI
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A319341(n) = (eulerphi(n)-A173557(n));

Formula

a(n) = A000010(n) - A173557(n).
a(n) = A318841(n) - A051953(n).
a(A005117(n)) = 0. - Ivan N. Ianakiev, Sep 18 2018
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A059956 - A307868 = 0.136246... . - Amiram Eldar, Dec 21 2023

A323366 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => A000035(i) = A000035(j) and A003557(i) = A003557(j) and A173557(i) = A173557(j).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 13, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 34, 38, 39, 25, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 39, 52, 36, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 56, 65, 72, 73, 74, 75, 76, 49, 77, 78, 79, 80, 81, 82, 68, 83, 56, 84, 68, 85, 86, 87, 88, 89, 90, 91, 92, 93, 60
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A295887(i) = A295887(j),
a(i) = a(j) => A323237(i) = A323237(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    v323366 = rgs_transform(vector(up_to, n, [(n%2), A003557(n), A173557(n)]));
    A323366(n) = v323366[n];

A333871 Sum of the iterated absolute Möbius divisor function (A173557).

Original entry on oeis.org

0, 1, 3, 1, 5, 3, 9, 1, 3, 5, 15, 3, 15, 9, 9, 1, 17, 3, 21, 5, 15, 15, 37, 3, 5, 15, 3, 9, 37, 9, 39, 1, 25, 17, 27, 3, 39, 21, 27, 5, 45, 15, 57, 15, 9, 37, 83, 3, 9, 5, 33, 15, 67, 3, 45, 9, 39, 37, 95, 9, 69, 39, 15, 1, 51, 25, 91, 17, 59, 27, 97, 3, 75, 39
Offset: 1

Views

Author

Amiram Eldar, Apr 08 2020

Keywords

Comments

Analogous to A092693 with the absolute Möbius divisor function (A173557) instead of the Euler totient function phi (A000010).

Examples

			a(3) = A173557(3) + A173557(A173557(3)) = 2 + 1 = 3.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p - 1; u[1] = 1; u[n_] := Times @@ (f @@@ FactorInteger[n]); a[n_] := Plus @@ FixedPointList[u, n] - n - 1 ; Array[a, 100]

A344994 Numbers k such that A173557(k) divides nonzero A051709(k).

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 27, 28, 32, 42, 48, 54, 60, 64, 96, 108, 112, 120, 126, 128, 150, 168, 176, 192, 204, 216, 240, 243, 250, 256, 294, 312, 378, 384, 396, 432, 440, 448, 456, 460, 480, 486, 496, 500, 504, 512, 540, 588, 672, 700, 768, 774, 828, 840, 864, 888, 924, 960, 972, 1000, 1014, 1024, 1080, 1134, 1176, 1216
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Cf. A344995, A345054 (subsequences).
Cf. also A344754, A345051.

Programs

  • PARI
    A051709(n) = ((sigma(n) + eulerphi(n)) - (2*n));
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    isA344994(n) = { my(u=A051709(n)); ((u>0)&&(0==(u%A173557(n)))); };

A344997 a(n) = A173557(n) * A344753(n).

Original entry on oeis.org

0, 2, 4, 5, 8, 24, 12, 11, 14, 64, 20, 56, 24, 120, 144, 23, 32, 78, 36, 152, 264, 280, 44, 120, 44, 384, 44, 288, 56, 672, 60, 47, 600, 640, 624, 182, 72, 792, 816, 328, 80, 1296, 84, 680, 480, 1144, 92, 248, 90, 332, 1344, 936, 104, 240, 1360, 624, 1656, 1792, 116, 1536, 120, 2040, 888, 95, 1824, 3120, 132, 1568, 2376
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 0; a[n_] := Module[{fct = FactorInteger[n], p}, p = fct[[;; , 1]]; Times @@ (p - 1)*(Times @@ f @@@ fct + n*Times @@ (1 + 1/p) - 2*n)]; Array[a, 100] (* Amiram Eldar, Dec 08 2023 *)
  • PARI
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A344753(n) = sumdiv(n,d,(dA344997(n) = (A173557(n)*A344753(n));

Formula

a(n) = A173557(n) * A344753(n).
a(n) = Product(p_i - 1) * [Sum_{d|n, dA008966(n/d) * d)], where p_i are distinct primes dividing n.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 1/zeta(2) - 2 * A307868 + zeta(2)*zeta(3) * Product_{p prime} (1 - 2/p^2 - 1/p^3 + 1/p^4 + 3/p^5 - 2/p^6) = 0.283799589272... . - Amiram Eldar, Dec 08 2023

A295877 Restricted growth sequence transform of A173557, Product_{p|n} (p-1).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 7, 1, 8, 2, 9, 3, 6, 5, 10, 2, 3, 6, 2, 4, 11, 7, 12, 1, 13, 8, 14, 2, 15, 9, 14, 3, 16, 6, 17, 5, 7, 10, 18, 2, 4, 3, 19, 6, 20, 2, 16, 4, 15, 11, 21, 7, 22, 12, 6, 1, 23, 13, 24, 8, 25, 14, 26, 2, 27, 15, 7, 9, 22, 14, 28, 3, 2, 16, 29, 6, 30, 17, 31, 5, 32, 7, 27, 10, 22, 18, 27, 2, 33, 4, 13, 3, 34, 19, 35, 6, 23
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2017

Keywords

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65536;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ This function from Michel Marcus, Oct 31 2017
    write_to_bfile(1,rgs_transform(vector(up_to,n,A173557(n))),"b295877.txt");

Formula

a(2n) = a(n).
Previous Showing 11-20 of 94 results. Next